
Notes on Recursion Theory
by Yurii Khomskii

This is a concise set of notes for the course Recursion Theory. It’s not
meant to replace any textbook, but rather as an additional guide for a better
orientation in the material.

–Yurii

1. Models of Computation.

1.1. Introduction.

We are looking at the collection of natural numbers, denoted by N :=
{0, 1, 2, 3, . . .}. Consider all f : N −→ N, or in general f : N

n −→ N, i.e.,
all functions that take some natural numbers as input and likewise output a
natural number. Intuitively, some of these functions are computable, that is,
for a given input (x0, . . . , xn) there is a mechanical, algorithmic process for com-
puting f(x0, . . . , xn). For example, the function f defined by f(x) := x · 2 + 5
is computable, because the following algorithm computes it: “take the input
x, multiply it by 2 and then add 5, and output the result.”

In general, there is a huge amount of functions from N
n to N (uncountably

many) and not all of them can be computable. The essential point of Recur-
sion Theory is to study this notion of computability, e.g. which functions are
computable, “how” computable they are etc.

So far, the concept of “computability” was intuitive and, even though most
of us have a good intuition about what qualifies as an algorithm, we still need
to make the notion precise if we want to develop a mathematical theory about
it. In other words, we need to give a formal definition capturing the intuitive
notion of “algorithmically computable”.

As it turns out, there are many equivalent definitions of this concept, the
so-called models of computation, and we shall present the main candidates in
the following sections. All of these define precisely the same class of computable
functions, which we will denote by Comp.

Comp := {f : N
n −→ N | f is computable}

The postulation that the class defined by one of those mathematical for-
malisms is indeed the class of functions we would intuitively call “computable”,
is usually called the Church-Turing Thesis.

1

Note that the class Comp may also contains partial functions, i.e., functions
whose value is not defined for every x ∈ N. This is an essential feature of
Recursion Theory, and it is not possible to give a satisfactory definition of
computability which would avoid it (otherwise one could produce a contradiction
by a diagonal argument.)

1.1. Definitions and Notation. Let f be a function from N
n to N.

1. We denote a sequence (x0, . . . , xn) by ~x.

2. If f(~x) is defined then we write f(~x) ↓. Otherwise we write f(~x) ↑.

3. The domain of f is dom(f) := {~x ∈ N
n | f(~x) ↓}.

4. The range of f is ran(f) := {y ∈ N | y = f(~x) for some ~x ∈ N}.

5. If f and g are two functions then f◦g is the function defined by (f◦g)(x) :=
f(g(x)).

6. A function f is total if dom(f) = N and partial otherwise.

7. If A ⊆ N
n is a set then we use the notation A for the complement of A,

i.e., N
n \A. C

1.2. The Recursive Model.

Our first model of computability, namely the “recursive functions”-model,
is based on the mathematical notion of definitions by recursion. We divide
the definition into two steps: first, we define the simpler class of primitive
recursive functions, denoted by PrimRec, and later we will extend it to the
class of recursive functions, denoted by Rec.

1.2. Definition. The class PrimRec of primitive recursive functions is defined
by induction as follows:

1. The constant zero function f : ~x 7→ 0 is primitive recursive. We will
denote this function by 0.

2. The successor function S : x 7→ x+ 1 is primitive recursive.

3. The i-th projection function ei : (x0, . . . , xn) 7→ xi is primitive recur-
sive.

4. If g, h0, . . . , hn are primitive recursion then the substitution function f
defined by f(~x) := g(h0(~x), . . . , hn(~x)) is primitive recursive.

2

5. If g and h are primitive recursive, then f defined as follows is primitive
recursive:

f(~x, 0) := g(~x)

f(~x, y + 1) := h(y, f(~x, y), ~x)1

In this case, f is a definition by primitive recursion based on initial
function g and recursion function h. C

Examples:

• Suppose we want to prove that the identity function id defined by id(x) :=
x is primitive recursive. Simply write id = e1 and we are done.

• Suppose we want to prove that the function f defined by f(x) := 3 is
primitive recursive. Then we can write

f = S ◦ S ◦ S ◦ 0

The equality clearly holds because for all x we have S(S(S(0)))(x) =
S(S(S(0))) = S(S(1)) = S(2) = 3. And, by the inductive definition, this
function is primitive recursive.

• Suppose we want to prove that addition, i.e. the function mapping (x, y)
to x + y, is primitive recursive. First, note that the intuitive recursion
involved is the following:

x+ 0 = x

x+ (y + 1) = (x+ y) + 1

Formally, then, we need the initial function g := id, and the recursion
function h = S ◦ e2. Clearly, g and h are primitive recursive. But then, so
is f defined by

f(x, 0) := g(x) = x

f(x, y + 1) := h(y, f(x, y), x) = S(f(x, y)) = f(x, y) + 1

Clearly, f is the addition function, since the formal definition corresponds
precisely to the intuitive one.

Note that all functions in PrimRec are total. Although many simple arith-
metical functions are primitive recursive, this notion is not sufficient to formalize
the intuitive concept of computability. Therefore, we expand the class of primi-
tive recursive functions to the class of recursive (sometimes called µ-recursive)
functions, denoted by Rec, by adding the µ-operator.

1.3. Definition. If P (x) is any predicate (relation), then µi (P (i)) is defined
to be the least i ∈ N such that P (i) holds.

Now the class Rec is defined by induction:

1To avoid confusion, note that different textbooks use a different order here. This will be
important when using projection functions: e1, e2 or e3.

3

1. If g is primitive recursive then it is recursive.

2. If g is recursive then so is f defined by

f(~x) := µi[g(~x, i) = 0 ∧ ∀j < i [g(~x, j) ↓6= 0]

C

Essentially, the idea of point 2. above is the mathematical simulation of the
following algorithm:

“If g is a recursive function, compute the value of g(~x, i) for incre-
menting i (i.e. i = 0, then i = 1, then i = 2 etc.) As soon as you
find g(~x, i) = 0, output i.”

N.B. f(x) is only defined if there exists a i such that g(~x, i) = 0 and for all
j < i, g(~x, j) is defined and 6= 0. This corresponds to the intuition of µ being
an algorithmic process computing the value of g(~x, i) for incrementing i, which
may get stuck while trying to compute an undefined value of g(~x, j).

1.3. The Turing Machine Model.

Another model of computation is the Turing Machine. This is a formalism
based not on an arithmetical notion like the recursive functions, but rather
on the notion of an actual algorithmic process. Abstracting itself from a real
computer on one hand, and a real mathematician with pen and paper on the
other, it is arguably the strongest model of computation.

1.4. Definition. A Turing Machine is a device with a two-way infinite
tape divided into cells, a reading and writing head and an internal finite set
of states Q := {q0, q1, . . . , qn}. On the tape can be written two symbols: 0 (for
“blank”) or 1. The head can read one symbol at a time, write a new symbol on
its place, and move left, right, or stay where it is. The actions of this machine
are controlled by a Turing program, which is a finite sequence of quintuples
of the following kind:

(q, s, q′, s′, X) ∈ Q× {0, 1}×Q× {0, 1}× {L,R,C}

Such a quintuple is interpreted as the following instruction to the Turing ma-
chine:

“If you are in state q and you read an s, go to state q′, write an
s′, and move the head left, right, or nowhere, depending on whether
X = L,R or C respectively.”2

2Note that many texts give slightly different versions of the Turing machine. For example,
in some cases the alphabet for the tape can consist not only of {0, 1} but all natural numbers
etc. In some cases (Soares) X = C is prohibited, while in yet other presentations (Cooper)
the machine can either print a new symbol or move to the right or left, in each step. These
details, however, are irrelevant and it is easy to translate a program from one style to another.

4

By convention, every Turing machine starts in state q1 (the initial state) and
halts if and only if it reaches state q0 (the halting state). C

By convention, an input x ∈ N is represented by x+ 1 consecutive 1’s and
the output is the total number of 1’s on the tape.

1.5. Definition. If T is a Turing machine then the corresponding function fT

is defined as follows:

fT :
N −→ N

x 7−→

{

y if on input x, T halts with output y
↑ if T never halts on input x

A function f is Turing computable if f = fT for a Turing machine T . The
class of all Turing computable functions is denoted by TuringComp. C

1.5. Equivalence of Models.

As we already mentioned, all models of computability are equivalent. In
our case, that means Rec = TuringComp. The Church-Turing thesis is the
statement that this class is indeed the class of functions that we want to call
“computable”.

Henceforth, we will denote the class of computable functions simply as Comp,
and refer to them as “computable”. When necessary, we can use whichever for-
malism is the most convenient (usually Turing machines). In practice, however,
it is rarely necessary to produce a formal Turing program, and when arguing
that a given function is computable, it will be sufficient to give an intuitive de-
scription of the algorithm computing it (such an argument is sometimes called
“proof by the Church-Turing thesis”).

Recall that Comp also contains partial functions. Let TotComp denote the
collection of computable functions which are also total (i.e. ∀x f(x) ↓).3

Note also that although we have only analyzed the computability of functions
so far, we can naturally extend the definition of computability to cope with sets.

1.9. Definition. Let X ⊆ N. Then

• X is computable if its characteristic function χX is total computable,
where

χX(x) =

{

1 if x ∈ X
0 if x /∈ X

C

3Sometimes the f ∈ Comp are explicitly called partial computable, or p.c. functions
(Soares) whereas total computable functions are just called “computable”. To avoid confusion,
you should always check which concept we are talking about.

5

Intuitively, a set X ⊆ N is computable precisely if there is an algorithm
which, given input x, determines whether x ∈ A or x /∈ A. The same thing
holds for relations R ⊆ N

n using the same definition but with N replaced by
N

n.

6

2. Coding and Enumerating
Computable Functions

2.1. Enumerating Turing Machines

Since our domain of discourse is the natural numbers N, everything we do,
including Turing machines, their programs, computations etc. needs to be coded
as natural numbers. To do this, we first need to code sequences of numbers as
numbers.

We know that in set theory there is a bijection N
n ∼= N for every n. But

here, we would like this bijection to be computable. This can be achieved in
many ways, and we present two:

1. Gödel Numbering. Let (x0, . . . , xn) be a sequence of natural numbers.
Let {p0, p1, p2, . . . } denote the prime numbers in order. Then we define
the function gn by gn(x0, . . . , xn) := px0

0 · . . . ·pxn

n . It can be checked
that this function is injective, so every sequence of n natural numbers,
regardless of n, has a unique such coding. It is also easy to see that this
function is computable.

Moreover, given an n ∈ N, there are computable functions πi which “de-
code” the number n and return the i-th decoded coordinate. That is,
if n = gn(x0, . . . , xn) then πi(n) = xi. Thus we can code and decode
sequences of numbers as numbers, using a computable algorithm (e.g. a
Turing machine).

2. Standard Pairing Function. The function gn is not surjective, i.e.
there are n which do not code any sequence. Another, injective and
surjective coding is the standard pairing function 〈., .〉 : N

2 −→ N defined
by 〈x, y〉 := 1

2 (x2 + 2xy+ y2 + 3x+ y). If we want to code three numbers,
we simply use 〈x, y, z〉 := 〈〈x, y〉 , z〉, and similarly for 〈x0, . . . , xn〉. Here
also, we can define a computable “decoding function”, i.e. a πi such that
πi(〈x0, . . . , xn〉) = xi.

It is not important which coding we choose (there are many others available
as well), but the important thing is that it can be done.

Using this method, we can easily also code more complicated things, like
Turing programs, Turing computations, primitive recursive functions etc. In
particular, we fix an enumeration of all Turing machines:

T0, T1, T2, . . .

7

using such a coding function. Intuitively, this enumeration is computable, in
the sense that

e 7−→ Te

Te 7−→ e

are computable functions. We will see later on what this means formally.

Because computable functions correspond to Turing machines, we can also
fix an enumeration of all computable functions. We denote these by

ϕ0, ϕ1, ϕ2, . . .

For a ϕe, we call e the index of ϕe. Also, we use the notation We := dom(ϕe) =
{~x | ϕe(~x) ↓}.

2.1. Padding Lemma. For any f ∈ Comp there are infinitely many indices e
such that f = ϕe.

Proof. Take any Turing machine T computing f . There are infinitely many
ways of adding redundant instructions at the end of the program (for example
those starting with a state which the Turing machine cannot enter.) All these
will yield a different index.

2.2. The Universal Turing Machine, Enumeration and S-
m-n Theorem

As we mentioned, given an e ∈ N, there is an effective algorithm for recover-
ing Te. Since it’s effective, a Turing machine should be able to do it. But rather
than outputting Te (what should that mean anyway?), what it does instead is
running a simulation of Te.

2.2. Definition. A Universal Turing Machine (UTM) is a Turing machine
which works as follows: taking (e, x) as input, it simulates the action of Te on
input x. C

2.3. Enumeration Theorem. There is a computable function ϕU : N
2 −→ N

such that ϕU (e, x) = ϕe(x).

Proof. Any UTM computes ϕU .

A more complex version of the Enumeration Theorem, where x is replaced
by ~x, is of course also possible.

As a converse to the Enumeration Theorem we have the so-called S-m-n
Theorem, which we will again present in the simplest possible case where n =
m = 1.

8

2.4. S-m-n Theorem. There is a computable function S1
1 : N

2 −→ N such
that for every computable ϕe : N

2 −→ N we have

ϕe(x, y) = ϕS1

1
(e,x)(y)

Proof. This involves a kind of “automated programmer”, i.e., an algorithm
that alters one Turing program into another.

Suppose we are given an index e and an input x. Then an algorithm for com-
puting S1

1(e, x) can be described as follows:

• Recover the Turing machine Te from e.

• Alter the machine Te into another one Te′ , in such a way that

– Te′ first writes x + 1 many “1”s to the left of the input, leaving a
blank between them and the other input.

– Then it positions the head to the left of that new input, and proceeds
by running Te.

• Now output e′.

Now it is clear that Te′ on input y computes precisely what Te would compute
on input (x, y). In other words, ϕe′(y) = ϕe(x, y). But e′ = S1

1(e, x), so this
completes the proof.

If we wish, we can be more exact as to the nature of S1
1 . An algorithm for

altering Te to Te′ can be done as follows:

• Take Te. Let T ∗

e be Te but with all states qi renamed by qi+x+3 except q0
which stays q0.

• Then Te′ is the following Turing program:

Te′ =

(q1, 1, q2, 1, L)
(q2, 0, q3, 0, L)
(q3, 0, q4, 1, L)
(q4, 0, q5, 1, L)

. . .
(qx+3, 0, qx+4, 1, C)

[

T ∗

e

]

All that the function S1
1 then does, is cleverly mapping (e, x) to e′ by doing

what we just did directly in terms of the codes of programs (for example, re-
naming qi by qi+x+3 corresponds to some computable arithmetic operation like
multiplication, exponentiation etc.)

9

3. Uncomputable Problems

3.1. Halting Sets

Recall that a set X ⊆ N is computable if, given x, there is an algorithm for
deciding whether x ∈ X or x /∈ X . Most sets from “ordinary mathematics” are
computable, e.g. X = 2N, X = {prime numbers} etc. But when the sets in
question are connected with computable functions themselves, then we can use
diagonalization arguments to show uncomputability.

3.1. Definition.

1. The halting set is the set K0 := {〈e, x〉 | ϕe(x) ↓}.

2. The diagonal halting set is the set K := {x | ϕx(x) ↓}.

3.2. Theorem. K is not computable.

Proof. Suppose, towards contradiction, that K is computable. Then the fol-
lowing function is computable:

f(x) :=

{

↑ if x ∈ K
0 if x /∈ K

Let e be its index, i.e., f = ϕe. But then

f(e) ↓ ⇐⇒ ϕe(e) ↓ ⇐⇒ e ∈ K ⇐⇒ f(e) ↑

which is a contradiction.

3.3. Corollary. K0 is not computable (and hence, the “halting problem” is not
decidable).

Proof. If K0 is computable then K is computable, because we could decide
whether x ∈ K or not by asking whether 〈x, x〉 ∈ K0 or not.

The last corollary is an example of reducing one set to another, in such a way
that the computability of the latter implies the computability of the former.

3.4. Definition. Suppose A,B ⊆ N. Then A is many-one reducible to B,
notation A ≤m B, if there is a total computable function f : N −→ N such that
for all x we have

x ∈ A ⇐⇒ f(x) ∈ B

C

10

3.5. Theorem. If A ≤m B and B is computable, then A is computable.

Proof. If A ≤m B via f then χA = χB ◦ f . So if χB is computable, so is χA.

3.2. Index Sets

Index sets are special kinds of subsets of N, namely those that correspond
to properties of functions rather than numbers.

3.6. Definition. A set X ⊆ N is an index set if

ϕx = ϕy → (x ∈ X ↔ y ∈ X)

Or equivalently: if X = {x | ϕx ∈ C} for some C ⊆ Comp. C

It is immediately clear that if A is an index set then A is also an index set.
Examples of such index sets are:

1. K1 := {x |Wx 6= ∅}

2. Fin := {x |Wx is finite}

3. Inf := Fin = {x |Wx is infinite}

4. Cof := {x |Wx is cofinite}

5. Tot := {x |Wx = N} = {x | ϕx is total }

3.7. Index Set Theorem. Let A be an index set such that A 6= N and A 6= ∅.
Then either K ≤m A or K ≤m A.

Proof. Let e0 be such that ϕe0
(x) ↑ for all x. Suppose e0 ∈ A. Pick any e1

such that ϕe1
∈ A. Define the function

ψ(x, y) :=

{

ϕe1
(y) if x ∈ K

↑ if x /∈ K

which is computable because an algorithm computing it is “run ϕx on input x; if
it halts, run ϕe1

on input y; if this halts, return the output”. By the S-m-n theo-
rem, there is a computable function f such that for every x we have ϕf(x)(y) =
ψ(x, y). To be precise, f(y) = S1

1(e, y) where e is the index of ψ. But now

x ∈ K =⇒ ∀y [ϕf(x)(y) = ϕe1
(y)] =⇒ ϕf(x) = ϕe1

(∗)
=⇒ f(x) ∈ A

x /∈ K =⇒ ∀y [ϕf(x)(y) ↑] =⇒ ϕf(x) = ϕe0

(∗)
=⇒ f(x) ∈ A

where the (∗) implication holds because A and A are both index sets.

11

So K is many-one reducible to A via f . Now, if e0 ∈ A, we get K ≤m A by a
similar argument but with the roles of A and A reversed.

3.8. Corollary (Rice’s Theorem). Let A be any index set such that A 6= N

and A 6= ∅. Then A is not computable.

Proof. This follows from the Index Set Theorem and Theorem 3.5.

Here is a quote about Rice’s theorem from Cooper (p 105):

“Magical as the above result may seem, its proof is firmly rooted in the
unsolvability of the halting problem. Intuitively, it says that because we
cannot computably decide whether a given computation ever halts, we
cannot distinguish between machines which halt on some input and those
which halt on no input — and if we cannot even do that, then there
cannot be any computable dichotomy of the (indices of) machines.”

12

4. Computably Enumerable Sets

4.1. Basic Things

The presentation of computably enumerable sets is slightly different from
that in Soares.

4.1. Definition. A set A ⊆ N is computably enumerable (c.e.) if it is
either ∅ or the range of a total computable function. C

In other words, A 6= ∅ is c.e. iff there is a total computable f which
“enumerates” all the elements of A:

A = {f(0), f(1), f(2), f(3), . . .}

There are two other useful and equivalent characterizations of c.e. sets.

4.2. Definition. A set A ⊆ N is called “in Σ1 form”, or simply Σ1, if it is of
the form A = {x | ∃yR(x, y)} for some computable relation R. C

This is the main characterization theorem for c.e. sets:

4.3. Theorem. Let A ⊆ N be a set. The following are equivalent:

1. A is c.e.

2. A is Σ1.

3. A = We = dom(ϕe) for some e.

Proof.

• 1 ⇒ 3. If A = ∅ then A = We for every nowhere-defined function ϕe.
Otherwise, consider the following algorithm: “given input x, compute f(i)
for incrementing i. If f(i) = x, output 1.” It is clear that this algorithm
computes the following function

f(x) :=

{

1 if x ∈ A
↑ if x /∈ A

Letting e be the index of f , we get A = We. (Equivalently, consider
f(x) := µi (f(i) = x)).

13

• 3 ⇒ 2. For all x we have:

x ∈ A ⇐⇒ ϕe(A) ↓ ⇐⇒ ∃s [ϕe,s(x) ↓]

and we know that ϕe,s(x) is a computable relation.

• 2 ⇒ 1. Suppose A = {x | ∃yR(x, y)}. If A = ∅ then it is c.e. by
definition. Otherwise, pick one p ∈ A (e.g. the least one), and define the
following function:

f(〈x, y〉) :=

{

x if R(x, y)
p otherwise

Then f is clearly computable, it is total because the standard pairing
function is surjective, and clearly ran(f) = A.

Intuitively, you can think of c.e. sets as follows: if we want to test whether a
given x is in A or not, then there is an algorithm such that if x ∈ A then it halts
and confirms x ∈ A, but if x /∈ A then it does not halt, and does not confirm
x ∈ A. Thus, the difference between computable and c.e. sets is the following:

A Computable A c.e.
x ∈ A→ the algorithm halts x ∈ A→ the algorithm halts
and confirms x ∈ A and confirms x ∈ A
x /∈ A→ the algorithm halts
and confirms x /∈ A

We can make this intuition precise:

4.4. Lemma. If A is computable then A is c.e.

Proof. Consider the algorithm “run χA; if the output is 0, enter an infinite
loop.” If ϕe is the function computed by this algorithm, then clearly A =
We.

4.5. Complementation Theorem (Post). A is computable iff both A and A
are c.e.

Proof. If A is computable then both A and A are computable so by Lemma
4.4 both A and A are c.e.

Conversely, suppose A and A are c.e. Suppose f enumerates A and g enumerates
B. Then we define a function h by

h(0) := f(0)

h(1) := g(0)

h(2) := f(1)

14

h(3) := g(1)

. . .

Now consider the following algorithm: “given input x, find µi(h(i) = x); if i is
even, output 1, if i is odd, output 0”. Since ran(h) = ran(f)∪ ran(g) = A∪A =
N, we know that µi(h(i) = x) is defined for all x. Then it is clear that the
algorithm computes the characteristic function χA of A.

4.2. “Dynamic” Enumerations

Each c.e. setWe can be seen as a union of finite, computable approximations:

We,0 ⊆We,1 ⊆We,2 ⊆ . . .

such that We =
⋃

s∈ω We,s. We can define We,s := dom(ϕe,s), or equivalently,
if We is enumerated by f , use We,s := {f(0), f(1), . . . , f(s)}. It doesn’t matter
which definition we use, but in each case the enumeration of We does not really
depend on the enumeration of Wi, for i 6= e. What we would like to do instead,
is to fix some simultaneous enumeration h of all the We’s, in such a way
that at each step precisely one new element is added to precisely one We.

4.6. Definition. A function h is a simulatenous computable enumeration
(s.c.e.) of all c.e. sets if it is totally computable and

ran(h) = {〈x, e〉 | x ∈We}

Since such an h clearly exists (e.g. let h(〈n, e〉) := 〈fe(n), e〉 where fe enumerates
We) we fix, from now on, an s.c.e. h.

Then we define We,s := {x | ∃t ≤ s (h(t) = 〈x, e〉)}. C

If X is a c.e. set, we write Xs to denote We,s where We = X . Now we can
compare the enumerability of different c.e. sets.

4.7. Definition. Let X,Y be two c.e. sets. Then

1. X \ Y := {x | ∃s (x ∈ Xs ∧ x /∈ Ys)}, the set of those x which are
enumerated in X before they may eventually be enumerated in Y .

2. X ↘ Y := (X \Y)∩ Y = {x | ∃s (x ∈ Xs ∧ x /∈ Ys ∧ ∃t > s(x ∈ Yt))}, the
set of those x which are first enumerated in X and at a later stage in Y .
C

Another useful characterization of this is the following: suppose X is a c.e.
set. Then we can define a function mX : N −→ N by mX(x) := µs (x ∈ Xs),
i.e. the first stage s at which x “appears in” X . Moreover, since the relation
“x ∈ Xs” is computable, the function mX is actually partially computable. It
follows from the definitions that if X and Y are two c.e. sets and x ∈ X ∩ Y ,
then either mX(x) < mY (x) or mY (x) < mX(x), but not mX(x) = mY (x).

15

5. Recursion Theorem

5.1. Basics

5.1. Recursion Theorem (Kleene). For every total computable function f
there is an n such that ϕn = ϕf(n).

Proof (quite detailed).

• Consider the function ψ defined as follows:

ψ(x, y) :=

{

ϕϕx(x)(y) if ϕx(x) ↓
↑ otherwise

Clearly, ψ is computable, since the following algorithm computes it: “run
ϕx on input x; if it halts with output w, run ϕw on input y; if it halts
output the result.” Equivalently, if ϕU is the function corresponding
to the Universal Turing Machine, then ψ can be written as ψ(x, y) :=
ϕU (ϕU (x, x), y).

• Now by the S-m-n theorem there is a total, computable function d such
that

ϕd(x)(y) = ψ(x, y)

namely, d is defined by d(x) := S1
1(e, x) where e is the index of ψ.

• Since f and d are both total computable functions, f ◦ d is also a total
computable function. Let z be its index, i.e.

ϕz = f ◦ d

Note that since ϕz is total, we have that in particular ϕz(z) ↓, so ψ(z, y) =
ϕϕz(z)(y) for all y.

• But then, what can we say about the function ϕd(z)? For every y, we get

ϕd(z)(y) = ψ(z, y) = ϕϕz(z)(y) = ϕ(f◦d)(z)(y)

and so
ϕd(z) = ϕf(d(z))

and hence d(z) is the fixed point n that we were looking for.

Basically, the intuitive consequence of the Recursion Theorem is that, when
defining a computable function ϕn, we may use the number n in the definition.
For example,

16

1. There is an n such that Wn = dom(ϕn) = {n}

2. There is an n such that ran(ϕn) = {n}

Let’s quickly see how we can formally do this:

1. Define

ψ(x, y) :=

{

1 if x = y
↑ if x 6= y

By the S-m-n theorem there is a computable f such that ϕf(x)(y) =
ψ(x, y). Let n be the fixed point of f . Then for all y

ϕn(y) = ϕf(n)(y) = ψ(n, y)

so Wn = {n}.

2. Define ψ(x, y) := x. Then by the S-m-n theorem there is a computable f
such that ϕf(x)(y) = ψ(x, y). Let n be the fixed point of f . Then for all
y we have ϕn(y) = ϕf(n)(y) = ψ(n, y) = n.

The second situation has some interesting applications to practical program-
ming: since we can see n as representing the code of ϕn, the function ϕn can be
said to “output its own code”. There are people who try doing the same in real,
existing programming languages. For example, this program in C apparently
outputs its own code:

char x[]="char x[]=%c%s%c;%cint main() {printf(x,34,x,34,10,10);return 0;}%c";

int main() {printf(x,34,x,34,10,10);return 0;}

Such programs are also called Quines. The Recursion Theorem guarantees
that Quines exist in every programming language which has the full computa-
tional power (i.e. equivalent to Turing machines).4

4If you are interested in this concept, try consulting e.g.
<http://www.madore.org/∼david/computers/quine.html> or
<http://en.wikipedia.org/wiki/Quines>.
For examples of Quines in many languages, see <http://www.nyx.net/∼gthompso/quine.htm>.

17

