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0. Introduction

One of the most intriguing developments of modern set theory is the investi-
gation of two-player infinite games of perfect information. Of course, it is clear
that applied game theory, as any other branch of mathematics, can be modeled
in set theory. But we are talking about the converse: the use of infinite games as
a tool to study fundamental set theoretic questions. When such infinite games
are played using integers as moves, a surprisingly rich theory appears, with con-
nections and consequences in all fields of pure set theory, particularly the study
of the continuum (the real numbers) and Descriptive Set Theory (the study of
“definable” sets of reals).

The concept of determinacy of games—a game is determined if one of the
players has a winning strategy—plays a key role in this field. In the 1960s,
the Polish mathematicians Jan Mycielski and Hugo Steinhaus [MySt62, My64,
My66] proposed the famous Axiom of Determinacy (AD), which implies that
all sets of reals are Lebesgue measurable, have the Baire property, the Perfect
Set Property, and in general all the “regularity properties”. This contradicts
the Axiom of Choice (AC) which allows us to construct irregular sets by using
an enumeration of the continuum. A lot of work on determinacy is therefore
done in ZF, i.e., Zermelo-Fraenkel set theory without the Axiom of Choice. In
such a mathematical universe with AC replaced by AD, the pathological, non-
constructive sets that form counter-examples to the regularity properties are
altogether banished.

But how should we understand determinacy in the context of ZFC, i.e., stan-
dard Zermelo-Fraenkel set theory with Choice? The easiest way is to look at
determinacy as another kind of regularity property, D, where a set of reals A
is determined if its corresponding game is determined. Since in the AD context
infinite games are used to prove regularities, one would expect determinacy to
be a kind of “mother regularity property”, one which subsumes and implies all
the others. This is indeed true, but only in the “classwise” sense: assuming
for some large collection Γ of sets that each of them is determined, we may
conclude that each set in Γ has the regularity properties. Does determinacy
actually have “pointwise” consequences, i.e., if we know of a set A that it is
determined, does that imply that A is regular? In general, the answer is no.
The real “mother regularity property” is the much stronger property of being
homogeneously Suslin, which does imply all the regularity properties pointwise.1

Although there are close similarities between determinacy and being homoge-
neously Suslin, the crucial difference lies in the fact that the former has only
classwise consequences whereas the latter has pointwise consequences. In this
sense determinacy is a relatively weak property.

Although, from the beginning, researchers were aware of this fact, a rigorous
study of pointwise (non-)implications from determinacy has not been carried

1[Ka94, Theorem 32.7]. For a definition of homogeneously Suslin, see e.g. [Ka94, p. 450
ff]; other relevant papers include [Ko98, Ko02, KoSc06].
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out until [Lö05]. In this thesis, we will continue the research started in that
paper and generalize some of its results.

Another focus of this thesis are the regularity properties themselves. We
take the view that most regularity properties are naturally connected with spe-
cial combinatorial objects called forcing partial orders. The motivation comes
from the theory of forcing, a mainstream area dealing with the independence
of certain propositions (like the Continuum Hypothesis) from the axioms of set
theory. These combinatorial objects are also interesting in their own right, and
can be put in connection with classical regularity properties (e.g., the Baire
property and the Perfect Set Property) as well as other regularity properties.
There are still a number of open questions regarding these connections.

This thesis will combine the study of pointwise consequences of determinacy
with the study of these general open questions.

Concretely, we denote a particular forcing partial order by P. Some P gener-
ate a topology, whereas others don’t, and this distinction into topological versus
non-topological forcing notions will be central to our work. The most important
regularity property connected to P is the Marczewski-Burstin algebra denoted
by MB(P), which can easily be defined for any P. However, when P is topo-
logical, this algebra tends to be a “bad” regularity property and is replaced by
the Baire property in the topology generated by P, denoted by BP(P). But this
is only a heuristic distinction, and no research has yet been done on what the
precise reason for the dichotomy is. This leads us to formulate our first research
question:

Main Question 1: Why is there a dichotomy between topological and non-
topological forcings P, i.e., why is it that for non-topological forcings P the right
regularity property is MB(P) whereas for topological ones it is BP(P)? When is
MB(P) a “good” property, and what is the relationship between the two regularity
properties?

Moving on toward pointwise consequences of determinacy, we wish to study
the connections between determinacy and the regularity properties introduced
above. In [Lö05], the case of non-topological forcings P and the correspond-
ing algebras MB(P) is covered, where it is proved that in all interesting cases
determinacy does not imply MB(P) pointwise. Also, a weak version of the
Marczewski-Burstin algebra, denoted by wMB(P), is introduced and studied
(where the connections with determinacy are more interesting). We will do an
analogous analysis for the topological case.

Main Question 2: Can we do an analysis of the pointwise connection between
determinacy and the Baire property BP(P) (for topological P), similar to the one
in [Lö05]? Can we also introduce a weak version of the Baire property wBP(P),
and if so, what is the pointwise connection between determinacy and wBP(P)?
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If BP(P) was a generalization of the standard Baire property, then there
are also several generalizations of the Perfect Set Property. These so-called
asymmetric regularity properties can also be connected to forcing partial orders
P, in which case we denote them by Asym(P). In current research, there are
four particular examples but as of yet no general definition. We would like to
find that general definition, and also to study the pointwise connections with
determinacy, analogously to Question 2. This leads us to the last research
question:

Main Question 3: Can a general definition for the asymmetric property
Asym(P) be given? If so, can we do a similar analysis for the pointwise connec-
tions between determinacy and Asym(P) as we did in Question 2?

This thesis is structured as follows: in Chapter 1, we introduce the basic
definitions and ideas related to the study of the real numbers and the forcing
notions. Chapter 2 is still introductory, developing in detail the key ideas: deter-
minacy, regularity properties, pointwise and classwise implications. In Chapter
3 we deal with Main Question 1. The main result there is Theorem 3.4 which
provides the connection between MB and BP. In the rest of the chapter we
study other aspects of Question 1 (when is MB(P) a σ-algebra) and provide a
partial answer in Theorems 3.6 and Theorem 3.13.

In Chapter 4 we deal with Main Question 2. Analogously to [Lö05] we
prove that determinacy does not imply BP(P) pointwise (Theorem 4.8) and
characterize the P for which determinacy does, or does not, imply the weak
Baire property pointwise (Theorems 4.13 and 4.18).

Finally, in Chapter 5 we deal with Main Question 3. Although we do not find
a clear definition for Asym(P), we do give a necessary condition which such a
property must satisfy, in terms of a game characterization. This characterization
is sufficient to solve the second part of the question: in Theorem 5.12 we do
prove that determinacy does not imply Asym(P) pointwise in all non-trivial
cases.

Acknowledgments. I would like to thank all the members of my thesis
committee for critically and appreciatively reviewing my work: Dr. Benedikt
Löwe, Prof. Dr. Jouko Väänänen, Prof. Dr. Joel David Hamkins, Prof. Dr.
Peter van Emde Boas and Brian Semmes. Also, I want to thank everyone in the
Univesity of Amsterdam who in any way contributed to my intellectual develop-
ment, particularly Dr. Maricarmen Mart́ınez and Prof. Dr. Dick de Jongh. But
first and foremost, I would like to thank Dr. Benedikt Löwe for his exceptional
guidance and support throughout the last two and a half years, in absolutely
all matters academic and otherwise, including, of course, the supervision of this
thesis, and for always being ready and willing to help whenever I needed it.
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1. Preliminaries

1.1 Notation.

For the most part, we use standard set-theoretic notation for notions related
to the natural and real numbers. The natural numbers are denoted by ω, ωω is
the set of all functions from ω to ω and nω is the set of functions from ω to n.
In general, we use the fixed symbol η to stand for an unspecified ordinal with
2 ≤ η ≤ ω and thus write η

ω to refer to the general case.
The set of all strictly increasing functions is denoted by η

↑ω, and [X ]ω is the
set of all infinite subsets of X , as usual. Similarly, [X ]n is the set of all subsets
of X of size n and [X ]<ω is the set of all finite subsets of X .

The set of all finite sequences with elements from η is denoted by η
<ω, and

for s ∈ η
<ω, s(i) is the i-th element of s. A finite sequence can also be specified

by writing s = 〈s0, s1, . . . , sk〉, and in a few cases this notation will be extended
to infinite sequences as well, i.e., we can write x = 〈x0, x1, x2, . . . 〉 to refer to
some x ∈ η

ω with x(i) = xi.
For s, t ∈ η

<ω, the concatenation of s with t is denoted by s_t, i.e., if
s = 〈s0, . . . , sk〉 and t = 〈t0, . . . , tl〉 then s_t := 〈s0, . . . , sk, t0, . . . , tl〉. For
x ∈ η

ω, the restriction of x to the first n values is denoted by x � n :=
〈x(0), . . . , x(n− 1)〉.

Since in set theory functions are represented as sets of pairs, one can (using
a notation which might look confusing to non-set-theorists) write s ⊆ t if s, t ∈
η

<ω and s is an initial segment of t. Similarly for s ∈ η
<ω and x ∈ η

ω. In most
of this text, therefore, if for a given x ∈ η

ω we write s ⊆ x it is assumed that s
is not just some subset of x but an initial segment.

Slightly non-standard is our notation of complements of sets: if the general
space X in which we are working is clear from the context (it will always be
some space of real numbers) and A ⊆ X , we shall write Ac for X \A.

Whenever necessary, we use standard notation of first order logic. We also
use the symbols ∀∞ and ∃∞ to stand for “for all except finitely many” and
“there are infinitely many”, e.g.

“∀∞n (x(n) = 0)” stands for “∃N s.t. ∀n ≥ N (x(n) = 0)”
“∃∞n (x(n) 6= 0)” stands for “∀N ∃n ≥ N s.t. x(n) 6= 0”.

All results of this thesis are theorems of ZFC.
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1.2 The Real Numbers.

Although in ordinary mathematics the term real numbers refers to the tradi-
tional “R”, (defined, e.g., as Dedekind cuts of sets of rationals, limits of Cauchy-
sequences etc.), this space is rarely used in pure set theory because it tends to
burden us with irrelevant complications. For studying the structural, topologi-
cal and set-theoretic properties of the continuum, it is most convenient to work
with ωω or 2ω, or in general η

ω for 2 ≤ η ≤ ω. Hence, following standard set-
theoretic practice, these are the spaces that form the standard notions of real
numbers. Consequently, an x from η

ω is called a real number, or simply real.
We will very briefly summarize the main topological and set-theoretic back-

ground of these real numbers. A detailed account can be found e.g. in [Ke95].

1.1. Definition. Given s ∈ η
<ω, we define the set of all reals extending s:

[s] := {x ∈ η
ω | s ⊆ x}

Then, the standard topology on η
ω is the topology which has {[s] | s ∈ η

<ω} as
its basis. C

It can easily be checked that this is indeed a topology, and that it is equiv-
alent to the product topology on η

ω provided that each η is endowed with the
discrete topology. It is also equivalent to the topology generated by the metric
d defined by:

d(x, y) :=

{

1
2n where n is least s.t. x(n) 6= y(n) or
0 if x = y

The space ωω with this topology is called Baire space and it is homeomorphic
to the set of irrationals R \Q. The space 2ω with this topology is called Cantor
space and it is homeomorphic to Cantor’s standard “ 1

3 set”.
Convergence in the Baire and Cantor spaces can conveniently be formulated

as follows:
xn −→ x iff ∀s ⊆ x (∀∞n (s ⊆ xn)) (1)

In this context of real numbers, the rational numbers (usually just denoted
by Q) can be defined as those reals which are eventually 0, i.e.

Q := {x ∈ η
ω | ∀∞n (x(n) = 0)}

For the rest, we assume familiarity with basic topological notions, in par-
ticular the notions dense, meager, Fσ, Gδ, Borel and so on. We will use the
notation A◦ for the interior of A and A for the topological closure of A.
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1.3 Trees.

Since a real x can be approximated by its finite initial segments s ⊆ x, sets
of reals can similarly be approximated by (countable) sets of finite sequences.
This leads to the crucial notion of (descriptive theoretic) trees.

1.2. Definition. A subset T ⊆ η
<ω is called a tree (on η) if it is closed under

taking initial segments, i.e., if t ∈ T and s ⊆ t then s ∈ T . A branch of T is an
x ∈ η

ω such that for every n, x � n ∈ T . The set of all branches of T is denoted
by [T ]. C

Using the formulation of limits (1) from above, it is not hard to see that for
every tree T , the set [T ] is closed (contains all its limit points). Furthermore,
given any set A ⊆ η

ω we can define the tree of A, TA := {x � n | x ∈ A, n ∈ ω}.
Obviously, A ⊆ [TA]. Moreover, since [TA] contains precisely the limit points
of A, we can view the operation A 7→ TA 7→ [TA] as the topological closure,
which means that for closed sets C we have C = [TC ]. Therefore, via a one-one-
correspondence we can identify trees with closed sets.

For the study of trees, the following concepts are of importance:

1.3. Definition.

1. A tree T is called pruned if every t ∈ T has an extension s ∈ T with t ⊂ s.
All the trees which we will consider will be pruned.

2. For a node t ∈ T , SuccT (t) := {s ∈ T | ∃n(s = t_ 〈n〉)} is the set of
immediate successors of t.

3. A node t ∈ T is called

• splitting if |SuccT (t)| > 1 and non-splitting otherwise.

• ω-splitting if |SuccT (t)| = ω and n-splitting if |SuccT (t)| = n < ω.

• totally splitting if ∀n (t_ 〈n〉 ∈ T ).

• The n-th splitting (ω-splitting, totally splitting etc.) node if it is a
splitting (ω-splitting etc.) node and there are exactly n nodes s ⊆ t
which are also splitting (ω-splitting etc.)

4. The stem of T , notation stem(T ), is the largest s ∈ T such that all t ⊆ s
are non-splitting. If such an s does not exist, then stem(T ) := {y} for the
unique y s.t. [T ] = {y}. Equivalently, stem(T ) =

⋃

{s ∈ T | ∀t ∈ T (s ⊆
t ∨ t ⊆ s)}

5. Clearly, if S ⊆ T then stem(T ) ⊆ stem(S). We can strengthen the ⊆-
relation on trees to a new relation, denoted by �, by setting S � T if
and only if S ⊆ T and stem(T ) 6= stem(S), i.e., a “sub-tree with strictly
longer stem”-relation.
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6. For a tree T and s ∈ T we use the notations

• T ↑s := {t ∈ T | t ⊆ s ∨ s ⊆ t} and

• Ts := {t ∈ η
<ω | s_t ∈ T }

for the subtree of T through s and the tree “T after s”, respectively. C

1.4 The Forcing Notions.

The technique of forcing is central to higher set theory, where it is used as
the primary means of showing independence results, like the independence of the
Continuum Hypothesis and other propositions from the axioms of set theory. In
each case, a specific forcing partial order or forcing notion is devised. Although
primarily, these are interesting from the point of view of independence proofs,
it has been noticed in recent years that the partial orders are interesting objects
of study in their own right.

As mentioned in the introduction, this thesis is concerned with special kinds
of these partial orders. The theory of forcing as such will not be relevant, and
consequently the reader is not required to have any knowledge of forcing. It is,
however, nice to remember, in the back of the mind, that the partial orders we
are studying are not arbitrary mathematical objects but form a part of a larger
and more fundamental theory.

1.4. Definition.

• By a forcing notion we mean any partial order (P,≤). In standard forcing
terminology, elements of P are called conditions and if for P, Q ∈ P we
have P ≤ Q, then we say “P is stronger than Q” or “P extends Q”.

• A forcing notion (P,≤) is called arboreal if it is order-isomorphic to a
collection T of trees ordered by inclusion, with the extra condition that
for every T ∈ T there is an S ∈ T with S � T .

• A forcing notion P is called topological if the collection {[P ] | P ∈ P} forms
a topology base on η

ω (this is the case if and only if for every P, Q ∈ P

we have that [P ] ∩ [Q] is either empty or a union of [R]’s for R ∈ P), and
non-topological otherwise. When P is topological, we shall use a slight
abuse of notation and write (ηω, P) to refer to the topological space η

ω

endowed with the topology generated by P. C

Our central objects of study will be the arboreal forcing notions. In the
list below, we present the classical examples of non-topological and topological
forcing notions—the key players of this thesis.

1.5. Definition. Non-topological arboreal forcings:

7



1. A tree T is called perfect if ∀t ∈ T ∃s ∈ T s.t. t ⊆ s and s is a splitting
node. Sacks forcing, denoted by S, is the partial order of perfect trees on
2ω.

2. A tree T is called super-perfect if all its splitting nodes are ω-splitting and
∀t ∈ T ∃s ∈ T s.t. t ⊆ s and s is ω-splitting. Miller forcing, M, consists
of super-perfect trees on ωω.

3. A tree T is called a Spinas tree2 if it is super-perfect with the additional
requirement that for every node t ∈ T we have

∀s1, s2 (t_s1 and t_s2 are ω-splitting nodes of T → |s1| = |s2|)

i.e., the next splitting node is a fixed distance away from t. Spinas forcing,
denoted by L∗, consists of Spinas trees on ωω.

4. A tree T is called Laver if ∀t ∈ T with stem(T ) ⊆ t, t is ω-splitting (and
stem(T ) is finite, i.e. [T ] is not a singleton). Laver forcing, L, consists of
Laver trees on ωω.

5. A tree T is called uniform if

∀s, t ∈ T (|s| = |t| → {n | s_ 〈n〉 ∈ T } = {n | t_ 〈n〉 ∈ T })

i.e. at every node the branching is dependent only on the height of the
node and not on the previous branchings. Silver forcing, V, consists of all
uniform perfect trees on 2ω. C

Note that M, L∗ and L must be defined on ωω rather than an arbitrary η
ω.

Sacks and Silver forcing S and V are usually defined on 2ω, but for our purposes
we will extend the definition onto an arbitrary η

ω.

Topological forcing notions are usually not formulated in terms of trees but
in some other way. It is always straightforward to give the isomorphism to
the partial order of trees, but often the original formulation is easier to use
and understand. Moreover, just as for trees there is a notational difference
between the trees themselves (“T ”) and the sets of their branches (“[T ]”), we
will analogously specify the conditions themselves by “P” and the set of reals
it specifies by “[P ]”.3

Note that, except C, all the topological forcing notions are defined on ωω

rather than an arbitrary η
ω.

1.6. Definition. Topological arboreal forcings:

2Spinas [Sp93] originally called these “uniform” trees, but we shall need that term for
another notion. Also, although Spinas did not originally relate these trees to forcing, it can
clearly be used as such, and in [BrHjSp95, Theorem 5.1] it is shown that in forcing-theoretic
terms Spinas forcing is equivalent to Laver forcing.

3This is essentially a matter of convenience. Since there is a bijection P ←→ [P ], we could
always also consider P to be a collection of the sets of reals [P ] themselves.
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1. Cohen forcing, C:4 the conditions are finite sequences ordered by: s ≤ t
iff t ⊆ s. To each s we associate [s] := {x ∈ η

ω | s ⊆ x}.

Equivalently, C is the collection of all trees T whose stem is finite and
every node extending the stem is totally splitting.

2. Hechler forcing, D: the conditions are (s, f) ∈ ω<ω×ωω, such that s ⊆ f ,
ordered by:

(t, g) ≤ (s, f) ⇐⇒ s ⊆ t and ∀n ≥ |s| (g(n) ≥ f(n))

To each condition (s, f) we associate [s, f ] := {x ∈ ωω | s ⊆ x ∧ ∀n ≥
|s| (x(n) ≥ f(n))}.

Equivalently, D is the collection of all trees T such that for some f ∈ ωω,
stem(T ) is finite and stem(T ) ⊆ f and for all t extending (and including)
the stem, SuccT (t) = {t_ 〈n〉 | n ≥ f(|t|)}.

3. Eventually different forcing, E: the conditions are (s, F ) ∈ ωω × [ωω]<ω,
s.t. ∀f ∈ F ∀n < |s| (f(n) 6= s(n)), ordered by

(t, G) ≤ (s, F ) ⇐⇒ s ⊆ t, F ⊆ G and

∀f ∈ F ∀n ≥ |s| (t(n) 6= f(n))

To each condition (s, F ) we associate [s, F ] := {x ∈ ωω | s ⊆ x ∧ ∀f ∈
F ∀n ≥ |s| (x(n) 6= f(n))}.

The isomorphism to a partial orders of trees is similar as for Hechler
forcing.

4. Mathias forcing, R: the conditions are (s, S) ∈ ω↑<ω×[ω]ω, with max(ran(s)) <
min(S), ordered by:

(t, T ) ≤ (s, S) ⇐⇒ s ⊆ t, T ⊆ S and ran(t \ s) ⊆ S

To each condition (s, S) we associate [s, S] := {x ∈ ω↑ω | s ⊆ x ∧ ∀n ≥
|s| (x(n) ∈ S)}. C

It is easy to check that in each case the collections {[P ] | P ∈ P} form a
topology base. The topologies generated by C, D and E are the standard topol-
ogy (as in Definition 1.1), the dominating topology and the eventually different
topology, respectively. Concerning Mathias forcing, one should note that the sets
[s, S] only contain increasing functions, so ωω is not open in the corresponding
topology. One way to deal with this is to postulate independently that ωω is
open, and another approach is to treat R as generating a topology on the space

4This is the original forcing notion, due to Paul Cohen [Co63, Co64], used in his original
1963 and 1964 proofs of the independence of the CH.
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ω↑ω, or equivalently [ω]ω, rather than ωω. In this more standard approach, this
is called the Ellentuck topology (due to [El74]).

We conclude this section with a few general definitions related to the theory
of forcing, which will be relevant on an occasional basis.

1.7. Definition. Let (P,≤) be a forcing partial order.

1. P, Q ∈ P are compatible if there is an R ∈ P s.t. R ≤ P and R ≤ Q.
Otherwise, P and Q are called incompatible and this is denoted by P⊥Q.
item An antichain is a collection S ⊆ P s.t. ∀P, Q ∈ S : P⊥Q.

2. P has the countable chain condition, shorthand c.c.c., if every antichain is
countable.

3. P is non-atomic if for every P ∈ P there are Q and R with Q ≤ P and
R ≤ P and Q⊥R.

4. (For arboreal forcings only:) P is strongly non-atomic if for every P ∈ P

there are Q and R with Q ≤ P and R ≤ P and [Q] ∩ [R] = ∅.

10



2. Classwise Consequences of
Determinacy

2.1 Regularity Properties.

In the study of the continuum, regularity properties of sets of reals play a
crucial role. The classical examples are Lebesgue measurability, the Baire prop-
erty (BP) and the Perfect Set Property (PSP), although many more examples
are around. If a set A ⊆ η

ω has a certain regularity property, we can think of
it as being natural in some way, exhibiting no counter-intuitive behavior. For
instance, for Lebesgue-measurable sets we have an intuitive concept of “size”
or “volume”; sets with the Perfect Set Property form a collection for which a
restricted version of the Continuum Hypothesis holds. In ZFC we can prove that
for each regularity property there are examples of sets that do not possess them,
but these proofs are non-constructive and rely on the full power of the Axiom of
Choice. It was even proved by Solovay [So70] that under the assumption that
an inaccessible cardinal exists, it is consistent with ZF that all sets of reals are
Lebesgue measurable, have the Baire property and the Perfect Set Property.5

So AC is fundamentally necessary to produce irregular sets.
In this section we will give definitions for the regularity properties and discuss

their relation to forcing notions.

2.1. Definition. Lebesgue-measurability is defined as follows:

• For each basic open [s], define the Borel measure by

µB([s]) :=







1
n|s| if η = n < ω

∏

i<|s|
1

2s(i)+1 if η = ω

This can be uniquely extended to a measure on the Borel sets, which is
also denoted by µB. Then

• We call a set A ⊆ η
ω a null set if there is a Borel set B such that A ⊆ B

and µB(B) = 0.

• We call a set A ⊆ η
ω Lebesgue measurable if the symmetric difference

A4B := (A \B) ∪ (B \A) is null for some Borel set B. In this case, the
Lebesgue measure µL is defined by µL(A) := µB(B). C

5The assumption of the inaccessible cardinal is not necessary for the Baire property and
the Perfect Set Property but is necessary for Lebesgue measurability, as [Sh84] shows.
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Lebesgue-measurability is a symmetric property in the sense that if A is
Lebesgue-measurable then so is its complement Ac. Moreover, it can be shown
that the collection of Lebesgue-measurable sets forms a σ-algebra.

2.2. Definition. We define the Baire property in the general setting of an
arbitrary topological space X .

1. A set A ⊆ X is nowhere dense if for every open O there is an open U ⊆ O
such that U ∩ A = ∅. Equivalently: if (A)◦ = ∅, i.e., the interior of the
closure of A is empty.

2. A set A ⊆ X is meager if it is a countable union of nowhere dense sets.

3. A set A ⊆ X has the Baire property (BP) if for some open set O, the
symmetric difference A4O is meager. C

The Baire property is also a symmetric property, and a straightforward com-
putation shows that the collection of sets with the Baire property forms a σ-
algebra.

2.3. Definition. A set A ⊆ η
ω has the Perfect Set Property (PSP) if it is

either countable or else contains the branches of a perfect tree, i.e. [T ] ⊆ A for
a perfect tree T . C

Contrary to Lebesgue-measurability and the Baire property, the Perfect Set
Property does not have to be symmetric, i.e., if A has the Perfect Set Property,
it is not necessary that Ac has it as well.6 In fact, it shall be taken as the prime
example of an asymmetric regularity property.7

Now, since the focus of this thesis are arboreal forcings, we will need to tie
this notion together with the regularity properties just discussed. The only prop-
erty where this connection is not naturally available is Lebesgue-measurability,
and for this reason we will treat it only marginally.

The Baire property is naturally connected to topological forcings: if P is a
topological forcing notion then (ηω, P) is a topological space and consequently
we can talk of the Baire property in the P-topology. Formally, we will write

BP(P) := {A ⊆ η
ω | A has the Baire property in (ηω, P)}

The Perfect Set Property talks about perfect sets, and therefore it is naturally
connected to Sacks forcing.

6In ZF it cannot be proved that PSP is not symmetric in this sense, since it is consistent
with ZF that all sets of reals have the PSP. In ZFC, however, our Theorem 5.12 provides a set
which does not have the PSP but its complement contains a perfect tree.

7The term “asymmetric” here refers both to the fact that the property is not necessarily
closed under complements, and that it talks about being “very large or very small”.
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Except for these classical regularity properties, there is one more property
that is especially important when dealing with arboreal forcing notions. This is
the so-called “Marczewski-Burstin algebra of measurability”, the investigation
of which was started in [Bu14, Ma35].

2.4. Definition. Let P be an arboreal forcing notion. A set A ⊆ η
ω is

Marczewski-Burstin-P-measurable, or shortly MB(P)-measurable if

∀P ∈ P ∃Q ∈ P, Q ≤ P s.t. [Q] ⊆ A or [Q] ⊆ Ac

The Marczewski-Burstin algebra of P is:

MB(P) := {A ⊆ η
ω | A is MB(P)-measurable} C

The MB-algebra is also a symmetric regularity property. Together with the
Baire property for topological forcings, it is the main regularity property, or
algebra of measurability, that is naturally attached to P. There is a certain
interrelation between the two properties and this will be discussed in detail in
Chapter 3.

Note also that both Lebesgue measurability and the standard Baire property
(BP(C)) can naturally be expressed using a Marczewski-Burstin-like character-
ization.

2.5. Proposition. A set A is Lebesgue-measurable if and only if for every
perfect, Lebesgue-measurable set with non-zero measure P there is a perfect,
Lebesgue-measurable set with non-zero measure Q ⊆ P such that Q ⊆ A or
Q ⊆ Ac.8

Proof. This was first proved by Burstin in [Bu14] and generalized by Reardon
in [Re96, Lemma 3.6].

2.6. Proposition. A set A has the (standard) Baire property if and only if for
every open U there is an open V ⊆ U such that either V ∩A is meager or V \A
is meager.

Proof. Suppose A has the Baire property, and let O be open such that M :=
A4 O is meager. Let U be an arbitrary open set. If O ∩ U = ∅ then we let
V := U so that clearly V ∩ A ⊆ M is meager. Otherwise, let V := U ∩ O so
that V \A ⊆M is meager.

Conversely, suppose the right-hand-side condition holds. Let

O :=
⋃

{[s] | [s] \A is meager}

O∗ :=
⋃

{[s] | [s] ∩A is meager}

Then
8A perfect set is a set P such that P = [T ] for a perfect tree T .
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1. O ∪O∗ is open dense. To see this, let U be open, so by assumption there
is an open V ⊆ U , and consequently some basic open [s] ⊆ V , such that
[s] ∩A or [s] \A is meager. Thus, either [s] ⊆ O∗ or [s] ⊆ O.

Consequently, the complement (O ∪O∗)c is nowhere dense.

2. O∩O∗ = ∅. If not, we would have some [s] and [t] with [s]∩ [t] 6= ∅, such
that [s] ∩ A is meager and [t] \ A is meager. But then [s] ∩ [t] is meager,
which is impossible by the Baire Category Theorem.

3. O\A is meager, because, since there are countably many [s]’s, it is a union
of countably many meager sets. Similarly, O∗ ∩A is meager.

Now we have A4O ⊆ (O ∪O∗)c ∪ (O \A) ∪ (O∗ ∩A), so it is meager.

2.2 Infinite Games.

The study of infinite games is a very distinct and intriguing field with con-
sequences throughout set theory. The roots of this subject go as far back
as Zermelo in 1913 [Ze13], but the crucial step was the introduction of the
Axiom of Determinacy in the 1960s by Jan Mycielski and Hugo Steinhaus
[MySt62, My64, My66]. Although it took some time for set theorists to notice
these developments, it is fair to say that nowadays infinite games have become
the central tool in descriptive set theory and the study of the continuum.

Informally, an infinite two-player perfect information game can be described
as follows:

• There are two players: I and II.

• Player I starts by playing an integer x0 ∈ η, followed by player II who
plays a y0 ∈ η, and then they take turns in playing xn, yn ∈ η.

• In the limit, a real is produced: x := 〈x0, y0, x1, y1, x2, y2, . . . 〉.

• For a fixed set A ⊆ η
ω, the game G(A) is defined by stating that I wins

if and only if x ∈ A (and II wins iff x /∈ A.)

Both players I and II may have strategies : these are function σ : η
<ω −→ η

which, given as input the play of the game so far, output the next move of the
player. A strategy for I (resp. II) is called a winning strategy in the game G(A)
if, no matter what the opponent plays, the real x resulting from following that
strategy is in A (resp. not in A).

Consequently, a game G(A) is called determined if either I or II has a
winning strategy, and a set A ⊆ η

ω is called determined if the game G(A) is
determined.

14



For a better intuitive understanding, note that determinacy can be rendered
as a sequence of alternating quantifiers. For example, for games of a fixed length
n, I having a winning strategy is equivalent to:

∃x0∀y0∃x1∀y1 . . .∃xn∀yn (x ∈ A)

and II having a winning strategy is equivalent to:

∀x0∃y0∀x1∃y1 . . .∀xn∃yn (x /∈ A)

so that determinacy becomes a tautology “φ∨¬φ”. In the scenario of infinitary
logic, one might even think of the sentences:

∃x0∀y0∃x1∀y1 . . . (x ∈ A)

∀x0∃y0∀x1∃y1 . . . (x /∈ A)

so that, via an infinitary switch of quantifiers, determinacy of infinite games
would also become a logical tautology.9 But in the case of ordinary logic and
set theory, determinacy is not self-evident.

Although the informal definition is useful, we will present another, more rig-
orous definition, which is easily seen to be equivalent but has the advantage of
being more “mathematical” and perspicuous, especially when proving pointwise
non-implications with which the rest of the thesis is concerned. Interestingly,
this definition allows us to skip the actual games, moving straight on to strate-
gies.

2.7. Definition.

• A tree on η is a strategy for player I if every node of even length is non-
splitting and every node of odd length is totally splitting.

• A tree on η is a strategy for player II if every node of odd length is
non-splitting and every node of even length is totally splitting.

• A strategy σ for I is winning for I in the game G(A) if [σ] ⊆ A, and a
strategy τ for II is winning for II in the game G(A) if [τ ] ⊆ Ac.

• A set A ⊆ η
ω is determined if either I or II has a winning strategy in

G(A), i.e.
∃σ for I s.t. [σ] ⊆ A or

∃τ for II s.t. [τ ] ⊆ Ac

• The collection of all determined sets will be denoted by D. C

9Although an infinitary switch of quantifiers is not an ordinary rule even in infinitary logic.
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The strength of this whole theory is that we do not need to limit ourselves to
games of the kind described above. Instead, we can let players choose elements
of any arbitrary set X instead of integers, arbitrary rules can be imposed on the
players during the course of the game, and an arbitrary “winning condition”
can be specified. As long as the set X is countable, any such game can be
encoded to form a standard game (as in Definition 2.7). Moreover, since the
notions of strategies, winning strategies and determinacy are invariant under
bijections, the determinacy of any such game is related to determinacy in the
sense of Definition 2.7 via an encoding of the set A in question.

As an example, let’s look at the Banach-Mazur game, or ∗∗-game, denoted
by G∗∗(A). The rules are as follows: I and II take turns in playing non-empty
finite sequences of integers, i.e., elements of η

<ω \ {∅}: s0, t0, s1, t1 etc. In the
limit, they construct the real x := s0

_t0
_s1

_t1
_ . . . and I wins iff x ∈ A.

Now fix a bijection π : η
<ω ←→ ω and, to every set A ⊆ η

ω associate the
set A′ ⊆ ωω defined by

A′ := {x ∈ ωω | π−1(x(0))_π−1(x(1))_π−1(x(2))_ · · · ∈ A}

We can then view π as a coding function, and every play of the Banach-Mazur
game corresponds, via π, to a play in an ordinary game. This carries through
to strategies, winning strategies etc. so that consequently we have:

G∗∗(A) is determined iff G(A′) is determined.

Finally, let us mention the following:

2.8. Definition. The Axiom of Determinacy AD is the statement:

“Every set of reals is determined” C

Although this axiom plays an important role in determinacy theory and
descriptive set theory, we shall not adopt it here. AD is inconsistent with the
Axiom of Choice, and is usually taken as a natural axiom in the context of ZF

alone. Since our point of view throughout this paper is ZFC, determinacy is
to be considered as another regularity property D, one which holds for many
natural sets but not for all sets.

2.3 Classwise Implications.

As this thesis is largely about the difference between pointwise and classwise
implications, let us make that more precise. A set Γ ⊆P(ηω) is called a boldface
pointclass if it is closed under continuous pre-images, i.e., if f is continuous and
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A ∈ Γ then f−1[A] ∈ Γ. Canonical examples of such pointclasses are, of course,
complexity classes of the projective hierarchy Σ1

n and Π1
n.10 When dealing with

a regularity property Reg, it is natural to ask the question whether all sets from
some Γ are regular, i.e., whether Γ ⊆ Reg. For larger Γ, such questions are often
very subtle, and in many cases independent from ZFC. Certain propositions of
the kind “Γ ⊆ Reg” can even be considered strong hypotheses and assumed as
additional axioms to prove results.

2.9. Definition. Let A ⊆P(ηω) and B ⊆P(ηω) be two collections/properties
of sets of reals. We say:

“A implies B pointwise” if A ⊆ B

“A implies B classwise” if for all boldface pointclasses Γ

(Γ ⊆ A→ Γ ⊆ B) C

Occasionally, we will need to put additional requirements on Γ (for example,
closure under intersections with basic open sets). We will then also talk about
“classwise implications” although technically speaking this is weaker than the
classwise implications according to Definition 2.9.

We will be particularly interested in the statements “D implies Reg point-
wise” versus “D implies Reg classwise”, where D is the collection of determined
sets and Reg some regularity property.

The classical regularity properties, as well as many other properties, follow
from the determinacy of specific games, i.e., there is a game G? such that
A ∈ Reg iff G?(A) is determined (in this case, we call G? a game representation
of Reg). These games are usually not standard integer-games as in Definition
2.7, though they can be encoded in that form. The encoding process, however,
alters the set A in question, so that we have A ∈ Reg iff G?(A) is determined
iff G(A′) is determined, where A′ is some set derived from A (as in the example
directly above Definition 2.8). Fortunately, the encoding is usually such that
if A ∈ Γ then also A′ ∈ Γ (because the functions involved in the encoding are
continuous).

That is why determinacy has mostly classwise rather than pointwise conse-
quences. Listing the abundance of these classwise consequences is beyond the
scope of this work, so let us just mention the classical examples.

2.10. Theorem (Mycielski-Swierczkowski, 1964). Determinacy implies Lebesgue
measurability classwise.

2.11. Theorem (Mazur, Banach, 1935). Determinacy implies the Baire prop-
erty classwise.

2.12. Theorem (Davis, 1964). Determinacy implies the Perfect Set Property
classwise.

10For a definition, see e.g. [Ke95, p. 313 ff].
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The original proofs are in [MySw64], [Mau81, p. 113 ff] and [Da64], respec-
tively. A modern survey of all three results can be found e.g. in [Ka94, pp.
373–377]. Each of these proofs uses a specific type of game. The proof of Theo-
rem 2.11 uses the Banach-Mazur game G∗∗(A) mentioned earlier, and the game
used in Theorem 2.12 will be discussed in detail in Chapter 5.

Note that the Axiom of Determinacy can be viewed as a very strong point-
class inclusion “P(ηω) = D”, concerning the “pointclass of all sets”. According
to the three theorems, therefore, AD (in ZF) implies that all sets of reals are
Lebesgue measurable, have the Baire property, and the Perfect Set Property—
and indeed this is the formulation in which the theorems were originally proved
and are still usually presented.

Concerning our other regularity property, the Marczewski-Burstin algebra,
there is a slight subtlety. It was proved in [Lö98] that in a certain sense deter-
minacy implies MB(P) classwise, but the games used to prove this are based
on real rather than integer moves, i.e., the players are allowed to choose from
sets X of cardinality 2ℵ0 . Such games are not equivalent to integer games,
and determinacy in that sense is not equivalent to determinacy in the sense of
Definition 2.7.

Whether or not the determinacy of integer games (i.e., determinacy in the
sense of Definition 2.7) implies MB(P) classwise is in some cases still an open
problem, and is related to the well-known open problem whether AD implies
the property of being completely Ramsey for all sets of reals.11

In contrast to these classwise consequences of determinacy, we can ask our-
selves whether determinacy implies any of the regularity properties pointwise,
that is, whether for instance D ⊆ BP, D ⊆ PSP etc. In most cases, the an-
swer will be “no”. To prove pointwise non-implication one must, first of all,
find counterexamples to regularity properties. As mentioned earlier, this can
only be done using the Axiom of Choice, and the generic method for this is the
Bernstein construction.

Because this construction is central to all our results, let us end this chapter
by giving its original application.

2.13. Theorem. There is a set A ⊆ η
ω such that neither A nor its complement

Ac contains a perfect tree.

Proof. Since each tree is a subset of η
<ω there are at most 2ℵ0 trees. Using AC,

fix an enumeration of all perfect trees:
〈

Tα | α < 2ℵ0
〉

. By transfinite recursion
on 2ℵ0 , we construct Aα and Bα in parallel. At each step, we take care that
|Aα| = |Bα| = |α|.

11Cf. [Ka94, Question 27.18]. The property of being completely Ramsey is just another
term for the Marczewski-Burstin algebra of Mathias forcing, MB(R). Because the other MB-
algebras are very similar in nature, it is likely that the problem is equally difficult to solve for
the other cases as well. Of course, there are forcings P for which this is not an open problem,
namely those for which MB(P) is not a σ-algebra and for which one can easily construct
counterexamples (in ZF).

18



• A0 = B0 := ∅.

• Suppose for α < 2ℵ0 that Aα and Bα are already defined. By induction,
|Aα ∪ Bα| = |α| + |α| = |α| < 2ℵ0 . Since |[Tα]| = 2ℵ0 , it follows that
|[Tα]\(Aα∪Bα)| = 2ℵ0 . In particular, we can choose two distinct aα, bα ∈
[Tα]\ (Aα∪Bα). Then we let Aα+1 := Aα∪{aα} and Bα+1 := Bα∪{bα}.

• If λ < 2ℵ0 is a limit ordinal, let Aλ :=
⋃

α<λ Aα and Bλ :=
⋃

α<λ Bα.

• Finally, set A :=
⋃

α<2ℵ0 Aα and B :=
⋃

α<2ℵ0 Bα.

By construction, it follows that A ∩ B = ∅. Then, for every perfect tree
Tα, [Tα] 6⊆ A because bα ∈ [Tα] ∩ B ⊆ [Tα] \ A, and also [Tα] 6⊆ Ac because
aα ∈ [Tα] ∩A. This completes the proof.

The set A constructed in the proof is called a Bernstein set, and the sets A
and B together are called Bernstein components (of

〈

Tα | α < 2ℵ0
〉

).
The theorem has some immediate consequences: because a Bernstein set A

is clearly uncountable, it does not have the Perfect Set Property. Also, since
strategies are perfect trees, neither A nor its complement can contain any strat-
egy, so A is not determined. Therefore, the Axiom of Choice implies that there
are sets without the Perfect Set Property, and not determined sets.

Also, since the proof of Theorem 2.13 did not rely on any specific property
of perfect trees except that their cardinality is 2ℵ0 , the same argument clearly
applies to any collection of sets of cardinality 2ℵ0 which can be well-ordered in
order-type 2ℵ0 .

2.14. Theorem. Let
〈

Xα | α < 2ℵ0
〉

be a collection with |Xα| = 2ℵ0 for all α <

2ℵ0 . Then there exist two Bernstein components A and B of
〈

Xα | α < 2ℵ0
〉

,
i.e.:

• A, B ⊆
⋃

α<2ℵ0 Xα

• A ∩B = ∅ and

• for every α < 2ℵ0 we have A ∩Xα 6= ∅ and B ∩Xα 6= ∅.

Proof. Analogous to Theorem 2.13.
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3. The Marczewski-Burstin Algebra
and the Baire Property

In this chapter we will deal with the first of our three main questions: the
difference between topological and non-topological forcings and the relationship
between MB and BP.

As already mentioned, every arboreal forcing notion has a corresponding
(symmetric) regularity property, or a so-called algebra of measurability. In prac-
tice, the following definition is always used: if P is a topological notion, the
algebra of measurability is the Baire property BP(P) and if P is non-topological
it is the Marczewski-Burstin algebra MB(P). This is, for example, clearly ev-
ident from the various Solovay-style characterizations and related results (cf.
[So69, BrLö99, BrHaLö05, Ik06]). Why is there this strange dichotomy? Of
course, the Baire property is only available if there is a topology, but the MB-
algebra seems to be available no matter what. However, taking the simplest
example of a topological forcing, C, there is an immediate problem: the set of
rationals Q is not in MB(C), since it is clearly not the case that for any basic
open [s] there is a basic open [t] ⊆ [s] with [t] ⊆ Q or [t] ⊆ Qc. Therefore MB(C)
is not a σ-algebra, it does not contain all Fσ and Gδ sets, and in fact isn’t really
a “regularity property” at all. The same holds for MB(D) and MB(E) as we
will see.

Thus, the following natural questions arise:

1. When is the MB-algebra a good regularity property (a σ-algebra)?

2. Is there an inherent reason why MB(P) is the “correct” notion of measur-
ability for non-topological forcings, whereas BP(P) is the “correct” one
for topological ones?

3. In the case of topological forcings P, what is the relationship between
BP(P) and MB(P)?

We shall give a complete answer to questions 2 and 3 and a partial one to
question 1. Whenever necessary, we will refer to these as Main Questions 1.1,
1.2 and 1.3.

3.1 MB and BP.

We start by proving a general but important result about the topological
spaces (ηω, P), i.e., the sets η

ω endowed with the topology generated by a topo-
logical forcing P.
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3.1. Definition. A topological space is called a Baire space12 if no non-empty
open set is meager, or, equivalently, if the intersection of countably many open
dense sets is dense. C

The classical Baire Category Theorem showed that the standard real num-
bers with the usual topology form a Baire space. Modern versions of this the-
orem say the same thing for completely metrizable spaces and locally compact
Hausdorff spaces (see e.g. [Ke95, Theorem 8.4]). Since (ηω, P) is in general
neither metrizable nor locally compact,13 we will need to prove another version
which applies to the present setting. It relies on the fact that all basic open sets
are trees.

3.2. Theorem. Let P be any topological forcing notion on η
ω. Then (ηω, P) is

a Baire space.

Proof. Let {On | n ∈ ω} be a sequence of open dense sets, and let A :=
⋂

n On.
We must show that A is dense. Let U be an arbitrary open set. Inductively,
define a sequence P0 � P1 � P2 � . . . from P as follows: let [P ′

0] ⊆ U be
arbitrary, and since O0 is open dense, let [P0] ⊆ [P ′

0] ∩ O0. For a given Pn,
first extend it to a P ′

n+1 with strictly longer stem, i.e. P ′
n+1 � Pn (this is

possible by definition of arboreal forcings). Then, since On+1 is open dense, let
[Pn+1] ⊆ [P ′

n+1] ∩On+1.

Since we have a sequence with increasing stems, we can define x :=
⋃

n stem(Pn),
which is a real number. But then, we claim that for all n and k, we have
x � k ∈ Pn. Let m be such that x � k ⊆ stem(Pm). If n ≤ m then Pm ⊆ Pn,
so x � k ⊆ stem(Pm) ∈ Pm ⊆ Pn. And if m < n then x � k ⊆ stem(Pm) ⊆
stem(Pn) ∈ Pn.

Therefore x ∈ [Pn] for all n. Hence, x ∈ [P0] ⊆ U and x ∈ [Pn] ⊆ On for all n.
Therefore x ∈ U ∩A, as had to be shown.

Next, we discuss the connection between the MB-algebra and the Baire
property. Suppose P is a topological forcing. Note that A ∈MB(P) is equivalent
to saying:

For all open O there is an open U ⊆ O such that U ⊆ A or U ⊆ Ac.

Therefore we easily get the following:

3.3. Proposition. MB(P) ⊆ BP(P).

Proof. Let A ∈ MB(P), and let B := A \ A◦. We claim that B is nowhere
dense. For any open O there is an open U ⊆ O such that U ⊆ A or U ⊆ Ac.

12The terminology is slightly confusing because “the Baire space” usually refers only to ωω ,
but “a Baire space” can be any topological space, e.g., 2ω .

13For example the dominating topology D is not metrizable since it’s not second countable.
The space (ωω , C) is not locally compact because it is a product of infinitely many non-compact
spaces. (This is not the case for (nω , C)).
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The former implies U ⊆ A◦, so in either case U ∩B = ∅. Writing A4A◦ = B,
we have that A◦ is open and B is nowhere dense, hence meager. Therefore A
has the Baire property.

The converse direction does not always hold. In the example given above,
MB(C) is not a σ-algebra and is, relatively speaking, a rather small collection.
What about topological forcings in general? We prove the following characteri-
zation:14

3.4. Theorem. Let P be a topological forcing notion. Then the following are
equivalent:

1. MB(P) is a σ-algebra.

2. MB(P) contains all meager sets.

3. All meager sets are nowhere dense.

4. MB(P) = BP(P).

Proof. 1 =⇒ 2: Clearly, every nowhere dense set A is in MB(P) since for every
open O there is an open U ⊆ O such that U ⊆ Ac. If MB(P) is closed under
countable unions, it follows that every meager set is also in MB(P).

2 ⇐⇒ 3: Let A be meager. Since it is in MB(P), for every open O there
is an open U ⊆ O such that either U ⊆ A or U ⊆ Ac. But the former is
impossible, since then U would be an open meager set, contradicting Theorem
3.2. Therefore the latter holds, which means that A is nowhere dense. The
converse direction is obvious since MB(P) contains all nowhere dense sets.

2 =⇒ 4: We know that MB(P) ⊆ BP(P) so it remains to prove the reverse
inclusion. Suppose A has the Baire property. Then there is some open set O
such that A 4 O is meager, hence in MB(P). Now, given any U , there is a
U ′ ⊆ U such that either (a) U ′ ⊆ A4O or (b) U ′ ⊆ (A4O)c. Also, since O is
open, there is a U ′′ ⊆ U ′ such that either (i) U ′′ ⊆ O or (ii) U ′′ ⊆ Oc. Then

Cases (a) + (i) imply U ′′ ⊆ Ac

Cases (a) + (ii) imply U ′′ ⊆ A
Cases (b) + (i) imply U ′′ ⊆ A
Cases (b) + (ii) imply U ′′ ⊆ Ac

This shows that A ∈MB(P).

4 =⇒ 1: this is immediate because BP(P) is always a σ-algebra.

This characterization at once answers a number of the questions originally
posed. First of all, it shows that MB(P) cannot be a σ-algebra strictly smaller

14This result is partly based on Ellentuck’s proof [El74] that the completely Ramsey sets
are precisely those with the Baire property in the Ellentuck topology.
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than BP(P): in other words, either MB(P) is “bad”, in which case it is a useless
notion of measurability, or it is “good”, in which case it is just BP(P) anyway.
The practical consequence of this is that we never need to use MB(P) as a notion
of measurability when P is topological.

Secondly, it indicates why MB(P) tends to behave badly for topological P:
condition 3 of the theorem is, of course, rather unnatural, and it is clear why
many ordinary topologies would not satisfy it. Note that an equivalent formu-
lation of this condition would be: “a countable intersections of open dense sets
is open dense.”

This practically settles Questions 1.2 and 1.3 above. It also answers Ques-
tion 1.1 for topological P, but we would still like to have a more perspicuous
explanation, which applies to all P, for the reason that MB(P) is a σ-algebra in
some cases and not a σ-algebra in other cases. This question turns out to be
more difficult than expected, but in the next two sections we can give at least
a partial answer.

3.2 Fusion Sequences.

In the literature, there is a heuristic method of proving that a given MB(P)
is a σ-algebra (the method is more commonly used for other technical purposes
in forcing theory). We shall give a general criterion in order for this method
to work. On the other hand, we can generalize the method used to prove that
MB(C), MB(D) and MB(E) are not σ-algebras. Together, these two results give
easily verifiable criteria for proving either one case or the other, but unfortu-
nately we will not be able to give an exhaustive characterization. However, one
should note that all the standard arboreal forcing notions fall into one of these
two categories, i.e., either one or the other of the verifiable criteria is satisfied.

We begin with the method of fusion sequences. Although it is used in the
existing literature (e.g. [Je86, p. 15 ff]) it has never been formally defined in an
abstract setting. This is the definition we propose:

3.5. Definition. Let (P,≤) be an arboreal forcing notion.

1. Given a P ∈ P, we say that a set A ⊆ η
ω is dense below P if for all P ′ ≤ P

there exists a P ′′ ≤ P ′ such that [P ′′] ⊆ A.15

2. Let {≤n}n∈ω be a sequence of sub-relations of the main relation ≤. If this
sequence has the property that whenever P0 ≥0 P1 ≥1 P2 ≥2 . . . then
P :=

⋂

n Pn ∈ P, then we say that {≤n}n∈ω has the fusion property. A

15Translating this into standard forcing terminology, this would mean that DA := {Q ∈ P |
[Q] ⊆ A} is dense below P .
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particular sequence P0 ≥0 P1 ≥1 P2 ≥1 . . . is then called a {≤n}n∈ω-
fusion sequence.

We say that the sequence {≤n}n∈ω has the amalgamation property if for
each n ∈ ω and P ∈ P, if A is dense below P then there is a Q ≤n P such
that [Q] ⊆ A.

3. Finally, we say that (P,≤) has the fusion and the amalgamation property
if there is a sequence {≤n}n∈ω with the fusion property and the amalga-
mation property. C

3.6. Theorem. Let P be an arboreal forcing notion. If P has the fusion and
amalgamation property then MB(P) is a σ-algebra.

Proof. Since MB(P) is closed under complements by definition, it suffices to
show closure under countable intersections. Let A0, A1, . . . ∈ MB(P). Fix some
Q ∈ P. The goal is to find a P ≤ Q such that [P ] ⊆

⋂

n An or [P ] ⊆ (
⋂

n An)
c
,

so that
⋂

n An ∈ MB(P).

Note that if we ever find a P ≤ Q such that [P ] ⊆ Ac
n for any n, then [P ] ⊆

⋃

n Ac
n = (

⋂

n An)
c

so we are done. Therefore, in the following we shall assume
that that is not the case. Inductively, we will build a fusion sequence in such a
way that [Pn] ⊆ An for all n.

Let P0 ∈ P be such that P0 ≤ Q and [P0] ⊆ A0. For each n, suppose [Pn] ⊆ An.
Since An+1 ∈MB(P), for each P ′ ≤ Pn there exists a P ′′ ≤ P ′ such that [P ′′] ⊆
An+1 or [P ′′] ⊆ Ac

n+1 — but the latter is impossible since it contradicts our
assumption above. Therefore An+1 is dense below Pn. Using the amalgamation
property, there is a Pn+1 ≤n Pn such that [Pn+1] ⊆ An+1. This gives us a fusion
sequence

Q ≥ P0 ≥0 P1 ≥1 P2 ≥2 . . .

so P :=
⋂

n Pn ∈ P and [P ] ⊆ [Pn] ⊆ An for all n, so [P ] ⊆
⋂

n An.

Thus, we have reduced the question of MB(P) being a σ-algebra to an ab-
stract combinatorial property of the forcing partial order. In concrete appli-
cations, one still needs to find a way to make the conditions of the theorem
true. Typically, the sub-relations ≤n are explicitly defined. The idea is that if
P ≤n Q then, though P is a smaller tree than Q, it is not too much smaller. In
this way it guarantees that in the limit we still get a tree of the desired type.

Perhaps some explanation for the term “amalgamation” is also required: in
our abstract definition we did not state how the Q in question should be con-
structed. In practice, however, this is usually done by taking all the trees that
are produced by the property of being dense below P , and somehow “amalga-
mating” these into one tree Q ≤n P .

All of this is best clarified in the form of a few examples.
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3.7. Proposition.

1. Sacks forcing S has the fusion and amalgamation property.

2. Miller forcing M has the fusion and amalgamation property.

Proof. The proof is essentially taken from [Je86, p. 15 ff].

1. For two perfect trees S and T , define T ≤n S iff T ≤ S and every n-th
splitting node of S is in T and is a splitting node of T (and S ≤0 T iff
S ≤ T ). To see that T0 ≥0 T1 ≥1 T2 ≥2 . . . is a fusion sequence, let
T :=

⋂

n Tn. Consider any t ∈ T , and let n be the number of splitting
nodes before t. Then, since Tn+1 ⊆ T , there are also n splitting nodes
before t in Tn+1 and, since Tn+1 is perfect, let s be the first splitting node
extending t. Then s is actually the (n + 1)-th splitting node of Tn+1 and
so it is a splitting node of Tn+2. Then for all i > n+2, s is also a splitting
node of Ti and hence s is a splitting node of T . This proves that T is a
perfect tree.

Now, let us check amalgamation: For any n, A ⊆ η
ω and T ∈ S s.t. A is

dense below T , let t1, . . . , tk be all the successors of all the n-th splitting
nodes of T . Then T ↑ ti ≤ T so there is an Si ≤ T ↑ ti with [Si] ⊆ A. Then
S := S1 ∪ · · · ∪ Sk is a perfect tree, S ≤n T and [S] ⊆ A. (Here, we have
“amalgamated” S1, . . . , Sk to form S.)

2. Miller forcing is entirely analogous, except that there are ω-many succes-
sors t0, t1, . . . of all the n-th splitting nodes, but that does not affect the
rest of the argument.

Using a similar, but more technically involved method, we can prove that
all the other non-topological forcing notions have the fusion and amalgamation
property. We will not give the details here, referring instead to [Je86, p. 15
ff]. Let us just note one other case of interest, namely Mathias forcing R. It
turns out that Mathias forcing also has the fusion and amalgamation property,
and hence that MB(R) is a σ-algebra. This is the only case of a topological
forcing notion where MB(R) is indeed a σ-algebra. Consequently, this implies
that meager sets in the Ellentuck topology are nowhere dense in the Ellentuck
topology.

3.8. Proposition. Mathias forcing R has the fusion and amalgamation prop-
erty.

Proof. See [Ke95, pp. 133–134] and [Je86, pp. 17–19].
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3.3 Counter-examples.

We have given an easily verifiable criterion which guarantees that MB(P) is
a σ-algebra. We would like to find a similar, easily verifiable criterion which
guarantees that MB(P) is not a σ-algebra? In the case of Cohen forcing, we
have already done that by specifying the counter-example Q. Here we shall do
the same for D and E, and then give an indication how this can be generalized
to form an easily verifiable criterion for P in general.

Let us start with Hechler forcing D. Here, we cannot use a counter-example
as simple as with C because every countable set is nowhere dense in the domi-
nating topology. Nevertheless, we do have a nice counter-example:

3.9. Theorem. MB(D) is not a σ-algebra.

Proof. For each N < ω, let

AN := {x | ∀n ≥ N, x(n) is even}

Each AN is nowhere dense since any (s, f) can be extended to a (t, g) such that
t(n) is odd for some n ≥ N , and then [t, g] ∩AN = ∅. However

A :=
⋃

N

AN = {x | ∀∞n (x(n) is even)}

i.e., the set of those x which are eventually even, is clearly not MB-measurable:
given any (s, f) we can extend f outside s to some function having only even
values, and also to one having only odd values. So [s, f ] 6⊆ A and [s, f ] 6⊆ Ac,
and since this holds for any (s, f), clearly A /∈MB(D).

The situation with eventually different forcing E is analogous to D.

3.10. Theorem. MB(E) is not a σ-algebra.

Proof. Define AN identically as in Theorem 3.9; then the AN are nowhere
dense, since every (s, F ) can be extended to a (t, F ) such that t(n) is odd for
some n ≥ N (this is because F , and hence {f(n) | f ∈ F}, is finite). On the
other hand, A :=

⋃

N AN is not in MB(E) for the same reason as with D.

This idea can be generalized, even beyond the scope of topological forcings.
For this, we introduce the following definitions.

3.11. Definition. Let (P,≤) be an arboreal forcing notion and {Xn}n∈ω a
collection of subsets of η.
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1. We say that {Xn}n∈ω has the tail property relative to P if

• ∀P ∈ P ∃x ∈ [P ] such that ∀∞n (x(n) ∈ Xn) and

• ∀P ∈ P ∃y ∈ [P ] such that ¬∀∞n (y(n) ∈ Xn).

2. We say that {Xn}n∈ω has the stem property relative to P if

• ∀P ∈ P ∀n < ω, ∃Q ≤ P such that |stem(Q)| > n and stem(Q)(n) /∈
Xn.

3. We say that (P,≤) has the pruning property if

• ∀P ∈ P ∀t ∈ P ∃Q ≤ P such that t ⊆ stem(Q). C

3.12. Lemma. If (P,≤) has the pruning property and {Xn}n∈ω has the tail
property relative to P, then {Xn}n∈ω has the stem property relative to P.

Proof. Fix a P ∈ P and an n < ω. By the tail property, there is a y ∈ [P ]
such that ¬∀∞i (y(i) ∈ Xi). Hence there is an m ≥ n such that y(m) /∈ Xm.
Now let t := y � (m + 1). By the pruning property, there is a Q ≤ P such that
t ⊆ stem(Q). This is the Q we needed to find. Hence, {Xn}n∈ω has the stem
property.

The method of showing that a certain MB-algebra is not a σ-algebra is then
given in the following theorem:

3.13. Theorem. Let P be an arboreal forcing notion. If there is a collection
{Xn ⊆ η}n∈ω which has both the tail and the stem property relative to P, then
MB(P) is not a σ-algebra.

Proof. Define
AN := {x ∈ ωω | ∀n ≥ N (x(n) ∈ Xn)}

A :=
⋃

N

AN = {x ∈ ωω | ∀∞n (x(n) ∈ Xn)}

By the stem property, each AN ∈ MB(P) since for all P ∈ P there is a Q ≤ P
with |stem(Q)| > N and stem(Q)(N) /∈ XN , which implies that [Q] ∩AN = ∅.

However, from the tail property it directly follows that for all P ∈ P, [P ] 6⊆ A
and [P ] 6⊆ Ac. Since this holds for all P , it cannot be that A is in MB(P).
Therefore MB(P) is not a σ-algebra.

Note that all standard arboreal forcings have the pruning property, which is
a very natural property for forcing notions to have. Therefore, in all standard
cases the tail property is sufficient to prove that MB(P) is not a σ-algebra.
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Conclusion, indication of further research.

We have found a clear relationship between MB(P) and BP(P) and answered
Questions 1.2 and 1.3 posed at the start. We also found a (relatively) easily
verifiable condition on P which guarantees that MB(P) is a σ-algebra, and a
contrary condition which guarantees that it is not, thus partially answering
Question 1.1. But it still remains to find an exhaustive characterization, which
could be a suggestion for further research.

Moreover, the condition of having the fusion and amalgamation property
used in Theorem 3.6 is very abstract and not immediately suitable for appli-
cations. It would be better to replace this with some condition of which it is
immediately clear whether P satisfies it or not. This is something that future
research might be able to provide. On the other hand, the fact that proving
the result for Mathias forcing is so involved suggests that perhaps a convenient
characterization does not exist and that, ultimately, each particular forcing par-
tial order P has to be studied individually. In any case, a general theory along
these lines should be at least as complex as the proof of Proposition 3.8.
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4. Determinacy and the Baire Property.

In Section 2.3. we saw how determinacy implies most regularity properties
classwise. We now come to Main Question 2, and thereby to the main topic of
this thesis, namely pointwise (non-)implications. Of course, as we saw Section
2.3, proving regularity properties from determinacy usually involves a game
characterization for some game other than the standard integer-game. Therefore
it is by no means surprising that determinacy should have mostly classwise
rather than pointwise implications.

Still, the rigorous study of pointwise consequences of determinacy was only
begun in [Lö05]. In that paper, Löwe studied the pointwise relationship between
determinacy and the Marczewski-Burstin algebra generated by non-topological
arboreal forcing notions P, and another, related notion of the weak Marczewski-
Burstin algebra, wMB(P). It was proved that determinacy does not imply
MB(P) pointwise, i.e., that D 6⊆ MB(P), and a characterization for P was given
for deciding when determinacy does, and when it does not, imply wMB(P).

In this chapter we carry on the formal investigation of pointwise conse-
quences. The final goal is to extend the result of [Lö05] to topological forcing
notions P, where the notion of measurability is the Baire property BP(P), as well
as to study a weak form of the Baire property, wBP(P). We will indeed prove
that determinacy does not imply BP(P) pointwise, and develop a characteriza-
tion of topological forcings P similar to that of [Lö05] for studying pointwise
implications from D to wBP(P).

On the way, we shall develop a useful general theory of proving pointwise
non-implications, one which simultaneously covers the MB-algebra, the Baire
property, Lebesgue measurability and potentially other (symmetric) regularity
properties that might show up.

4.1 Generalized MB-algebras.

The primary method of proving pointwise non-implications is via Bernstein
constructions. In [Lö05] this was pretty straightforward since MB(P) lends it-
self perfectly for an application of the Bernstein construction. In the case of
regularity properties in general, it would therefore be useful to have an MB-like
characterization. We already noted in Section 2.1 that both Lebesgue measura-
bility and the Baire property have these characterizations, but in order to make
this precise we need the following notion of a generalized Marczewski-Burstin
algebra.

4.1. Definition. Given any two collections A,B ⊆ P(ηω), we define the
generalized Marczewski-Burstin algebra MB(A,B) by setting

A ∈ MB(A,B) ⇐⇒ ∀P ∈ A ∃Q ∈ B, Q ⊆ P s.t. Q ⊆ A ∨Q ⊆ Ac
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If we are dealing with MB(A,A) we simply write MB(A). Clearly, the MB-
algebra for arboreal forcings P is the special case where A = {[P ] | P ∈ P}.
C

Using this notion, we can prove pointwise non-implications analogously to
[Lö05]. The only thing that remains to be checked are some cardinality condi-
tions.

4.2. Theorem. Let A,B ⊆P(ηω), and suppose there is some strategy σ (for
I or II) and a corresponding P ∈ A such that:

1. |B ∩P(P )| ≤ 2ℵ0 and

2. For every Q ∈ B ∩P(P ) we have |Q \ [σ]| = 2ℵ0 .

Then determinacy does not imply MB(A,B) pointwise.

Proof. Let {Qα | α < 2ℵ0} enumerate B∩P(P ), which automatically gives an
enumeration of {(Qα \ [σ]) | α < 2ℵ0}. Since this is a collection of 2ℵ0 sets of
cardinality 2ℵ0 , we can apply the general Bernstein construction as in Theorem
2.14 and find two disjoint sets A and B such that ∀α (Qα \ [σ]) ∩ A 6= ∅ and
(Qα \ [σ]) ∩B 6= ∅.

Let A′ := A ∪ [σ]. Then A′ does not contain, and is not disjoint from, any
Q ∈ B ∩P(P ), so P witnesses the fact that neither A′ nor its complement
is in MB(A,B). But if σ is a strategy for player I then A′ is determined,
whereas if it’s a strategy for player II then (A′)c is determined. This proves
D 6⊆MB(A,B).

Some research has been done on Marczewski-Burstin-like characterizations of
certain properties, among others in [BaBaCo00/01, BaCi01/02, BrEl99]. Given
some collection Reg of interest—for example, a regularity property—the aim
was to find a suitable collection A such that Reg = MB(A). For us, a one-way
inclusion is in fact sufficient.

4.3. Corollary. Let Reg ⊆P(ηω) be any regularity property. Suppose we can
find collections A and B satisfying the conditions of Theorem 4.2, and such that
Reg ⊆ MB(A,B). Then determinacy does not imply Reg pointwise.

Proof. D ⊆ Reg ⊆ MB(A,B) would contradict Theorem 4.2.

In many cases, the rather complicated conditions of Theorem 4.2 will be easy
to verify. For example, we might have |B| ≤ 2ℵ0 , or we might have |Q\[σ]| = 2ℵ0

for all Q, or we might have the conditions go through for all σ, or all P etc. All
of these would make life easier, but of particular interest is also the following
result from [Lö05].

4.4. Lemma. Let A ⊆ P(ηω) be a collection such that |A| ≤ 2ℵ0 and for
every P ∈ A, |P | = 2ℵ0 . Then the conditions of Theorem 4.2 are satisfied, and
consequently D 6⊆ MB(A).
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Proof. Condition 1 is trivially satisfied, so it remains to show 2. If for all
P ∈ A and all strategies σ, we have |P \ [σ]| = 2ℵ0 then we are done. Otherwise,
fix P, σ such that |P \ [σ]| < 2ℵ0 . Let τ be any strategy such that [σ] ∩ [τ ] = ∅

(this is always possible). For any Q ∈ A∩P(P ), we then have Q∩ [τ ] ⊆ P \ [σ]
and so |Q∩ [τ ]| < 2ℵ0 . Since |Q| = 2ℵ0 , this implies that |Q \ [τ ]| = 2ℵ0 . So the
pair (P, τ) satisfies condition 2.

Since all standard arboreal forcings P from Section 1.4 (and, in fact, any
arboreal forcing notion of interest) satisfy the requirements of Lemma 4.4, de-
terminacy does not imply MB(P) pointwise, as we already knew from [Lö05].
But this situation also applies to Lebesgue measurability:

4.5. Theorem. Determinacy does not imply Lebesgue measurability pointwise.

Proof. We use the MB-like characterization from Proposition 2.5. Let

AL := {P ⊆ η
ω | P is perfect, Lebesgue-measurable with non-zero measure}

This obviously satisfies the conditions of Lemma 4.4 so D 6⊆MB(AL). But from
[Bu14] we know that A is Lebesgue measurable iff it is in MB(AL).

Although this proof is a nice illustration of the application of our general
theory, we should note that the theorem can also be proved more directly:
starting with a non-Lebesgue-measurable set A, define A∗ := {〈0〉_x | x ∈
A} ∪ {x | x(0) = 1}. By definition of Lebesgue measurability it follows that A∗

is also non-Lebesgue-measurable (otherwise µL(A) = µL(A∗)− µL({x | x(0) =
1})). But A∗ is clearly determined since I has a winning strategy by playing a
“1” in the first move.

4.2 Determinacy and BP(P).

Having built up the technology of proving pointwise non-implications, let
us get back to the main task of proving D 6⊆ BP(P) for topological P. Our
first inclination would be to use the MB-like characterization of the Baire prop-
erty given in Proposition 2.6. This general idea is correct, but there are some
unexpected difficulties along the way.

First of all, the characterization from Proposition 2.6 is no good the way it is
stated. Brown and Elalaoui-Talabi [BrEl99, Theorem 4] give a precise version of
this characterization, namely that BP(P) ⊆ MB(GP) where GP is the collection
of Gδ sets which are co-meager in an open set:

GP := {P | P is Gδ and ∃O open s.t. P ⊆ O and O \ P is meager}

(where all topological concepts refer to the P-topology). Formulated this way,
one is already quite tempted to apply some version of Theorem 4.2. Unfortu-
nately, proving the cardinality conditions for this characterization turns out to
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be surprisingly difficult. In particular, although in the standard topology there
are only 2ℵ0 Gδ sets and each Gδ set is either countable or has cardinality 2ℵ0

(which makes the proof easy), for D and E this does not work: there are 2(2ℵ0 )

Gδ sets and a Gδ set can have any cardinality between 0 and 2ℵ0 whatsoever!16

Therefore, we will adopt a different (though related) approach. Let PT :=
{[T ] | T is a perfect tree} and let OP be the collection of all open sets in the
P-topology. We will prove the characterization

BP(P) ⊆MB(OP, PT)

in Proposition 4.7 and, once this is ready, we get the cardinality conditions for
free.

Our result will cover all topological P provided that one very simple condition
is satisfied: (P,≤) must be non-atomic in the sense of Definition 1.7. Since
any partial order interesting from the point of view of forcing satisfies this
condition,17 this is not really an issue.

Most of the work in proving the inclusion is contained in the following tech-
nical lemma.

4.6. Lemma. Let P be any non-atomic, topological forcing notion. Let O be
open and C ⊆ O be Gδ co-meager in O (in the P-topology). Then C contains a
perfect tree.

Proof. By Theorem 3.2 our space is Baire, so C is also dense in O. Let
C =

⋂

n Cn with each Cn open. Since C ⊆ Cn, each Cn is actually open dense
in O. By induction, we will construct a collection of basic open sets [Pu] indexed
by u ∈ 2<ω, while taking care that [Pu] ⊆ C|u|. We proceed as follows:

• Since C0 is open dense in O, let P∅ ∈ P be such that [P∅] ⊆ O ∩C0.

• Suppose we have u ∈ 2<ω and [Pu] ⊆ O, with |u| = n. Note that by
definition of arboreal forcings, there is a P ′

u ⊆ Pu with strictly longer
stem, i.e. P ′

u � Pu. By non-atomicity, there are P 0
u ⊆ P ′

u and P 1
u ⊆ P ′

u

such that [P 0
u ] ∩ [P 1

u ] = ∅. Since Cn+1 is open dense in O, there are
[Pu_〈0〉] ⊆ [P 0

u ] ∩ Cn+1 and [Pu_〈1〉] ⊆ [P 1
u ] ∩ Cn+1

Now, for each y ∈ 2ω we get a sequence

P∅ � Py�1 � Py�2 � Py�3 � . . .

and correspondingly a real x :=
⋃

n stem(Py�n). Thus we define the following
mapping:

ϕ :
2ω −→ η

ω

y 7−→
⋃

n stem(Py�n)

16We will show that every H ⊆ 2ω is a Gδ set in (ωω , E). For x ∈ 2ω , let x̌(n) := 1− x(n).
Given any H ⊆ 2ω , define H• :=

S
x∈H

[∅, x̌] which is open. Clearly H ⊆ H• ∩ 2ω . But
conversely, if x ∈ H• ∩ 2ω then x ∈ [∅, y̌] for some y ∈ H. But for x, y ∈ 2ω , this can
only happen if x = y ∈ H. Therefore H = H• ∩ 2ω . Moreover, since we can write 2ω =T

n

�S
s∈2n [s,∅]

�
we see that 2ω is Gδ, and hence H is also Gδ.

17See e.g. [Ku80, Lemma VII 2.4]
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Using an argument like the one in the proof of Theorem 3.2, it also follows that
ϕ(y) is the unique real in the singleton set

⋂

n[Py�n].

It is also clear that ϕ is injective: if y 6= y′, let n be least such that y(n) 6= y′(n),
say, y(n) = 0 and y′(n) = 1, and let u := y � n = y′ � n. Then, by construction,
[Pu_〈0〉] ∩ [Pu_〈1〉] = ∅, but ϕ(y) ∈ [Pu_〈0〉] and ϕ(y′) ∈ [Pu_〈1〉]. Therefore
ϕ(y) 6= ϕ(y′).

Now let T be the tree of ϕ[2ω], i.e.

T := {s ∈ η
<ω | ∃u ∈ 2<ω (s ⊆ stem(Pu))}

It follows that [T ] = ϕ[2ω]. Clearly, T is a perfect tree: let s ∈ T and u be least
s.t. s ⊆ stem(Pu). Let y, y′ ∈ 2ω with y 6= y′ extend u. Then ϕ(y) 6= ϕ(y′), and
both ϕ(y) and ϕ(y′) are extensions of s in [T ].

It remains only to show that [T ] ⊆ C. But by construction, for every x ∈ [T ]
there is a y ∈ 2ω such that x = ϕ(y), i.e

⋂

n[Py�n] = {x}. Hence, for every n,
x ∈ [Py�n] ⊆ Cn, so x ∈

⋂

n Cn = C.

This completes the proof.

We can now combine Lemma 4.6 with the MB-representation of the Baire
property from Proposition 2.6 to prove the desired inclusion.

4.7. Proposition. Let P be a non-atomic, topological forcing notion. Then
BP(P) ⊆ MB(OP, PT).

Proof. Let A have the Baire property, and let U be open. By Proposition 2.6
we know that there is an open V ⊆ U such that V ∩ A is meager or V \ A is
meager. Assume the former. Let M be an Fσ meager set such that V ∩A ⊆M .
Then V \M is Gδ, and it is comeager in V . By Lemma 4.6, there is a perfect
tree T with [T ] ⊆ V \M ⊆ Ac. Similarly, if V \ A is meager then there is a
perfect tree T with [T ] ⊆ V and [T ] ⊆ A. This completes the proof.

Having completed the most difficult task of proving the inclusion BP(P) ⊆
MB(OP, PT), the rest is straightforward.

4.8. Theorem. Let P be a non-atomic, topological forcing notion. Then
determinacy does not imply BP(P) pointwise.

Proof. Fix any basic open P ∈ P with |stem(P )| ≥ 2. Then fix any strategy σ
such that [P ] ∩ [σ] = ∅, which is always possible just by letting the beginning
of σ be different from the stem of P . Clearly, then, the cardinality conditions of
Theorem 4.2 are satisfied, i.e., there are at most 2ℵ0 perfect trees, and for every
perfect tree T ⊆ P , obviously |[T ] \ [σ]| = |[T ]| = 2ℵ0 . The rest then follows by
Theorem 4.2.
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4.3 Determinacy and wBP(P).

The weak Marczewski-Burstin algebra is a local version of the full MB-
algebra. Essentially, it was introduced in [BrLö99] and studied further in [Lö05].

4.9. Definition. Let P be a forcing notion. The weak Marczewski-Burstin
algebra, denoted by wMB(P), is defined by

A ∈ wMB(P) :⇐⇒ ∃P ∈ P ([P ] ⊆ A or [P ] ⊆ Ac) C

4.10. Proposition. MB(P) and wMB(P) are classwise equivalent. To be
precise, if Γ is a boldface pointclass closed under intersections with basic open
sets (i.e. A ∈ Γ→ A ∩ [s] ∈ Γ), then Γ ⊆ MB(P)↔ Γ ⊆ wMB(P).

Proof. See [BrLö99, Lemma 2.1].

In [Lö05], the author classified all arboreal forcings P according to whether
D implies wMB(P) pointwise or not. He identified three classes of forcings: for
the first class the inclusion holds, for the second class it does not and for the
third class there are examples either way.

Intuitively, this result can be understood as follows: if we would denote by
Strat the collection of all strategies (which is not an arboreal forcing according
to Definition 1.4 because we cannot extend the stems arbitrarily), then deter-
minacy is almost wMB(Strat) (it is not quite, because determinacy involves a
difference between strategies of I and II). Therefore, the question whether de-
terminacy implies wMB(P) is inherently related to the question: how different
is P from Strat? For example, if Strat ⊆ P then determinacy implies wMB(P)
pointwise. This is the case with Sacks, Miller and Spinas forcing but not with
the other forcing notions.

In the case of the Baire property, there is no “weak Baire property” in the
existing literature, so we need to search for the right definition. Recall that in
Proposition 2.6 a Marczewski-Burstin-like characterization of the Baire property
was given. Such a characterization of course lends itself easily for the definition
of a “weak” version.

4.11. Definition. Let P be a topological forcing notion. The weak Baire
property, denoted by wBP(P), is defined by:

A ∈ wBP(P) :⇐⇒ ∃ open O (O ∩A is meager or O \A is meager.) C
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We must still show that this is an appropriate definition. It definitely looks
like a very natural analogue of the situation with the MB-algebra. But a cri-
terion which wMB must satisfy in order to make sure that the definition is ap-
propriate, is the classwise equivalence with the full Baire property, analogously
to Proposition 4.10. This is true for the standard topology:

4.12. Proposition. BP(C) and wBP(C) are classwise equivalent. Precisely,
if Γ is a boldface pointclass closed under intersection with basic open sets, then
Γ ⊆ wBP(C)↔ Γ ⊆ BP(C).

Proof. The left-to-right direction is obvious so let’s prove the reverse. Let
A ∈ Γ and let O be an arbitrary open set. Let [s] ⊆ O be basic open. Then
define the following function:

f :
η

ω −→ [s]
x 7−→ s_x

It is not difficult to check that f is a bijection between η
ω and [s] and that

both f and f−1 are continuous, i.e., f is a homeomorphism. Now consider the
set A′ := f−1[[s] ∩ A]. By assumption, A′ ∈ Γ. Therefore A′ ∈ wBP(C), so
there is an open set U ′ such that U ′ ∩A′ is meager or U ′ \A′ is meager. Now,
let U := f [U ′]. By construction, U ⊆ [s] ⊆ O, and f [U ′ ∩ A′] = U ∩ A and
f [U ′\A′] = U \A. Since f is a homeomorphism, either U ∩A or U \A is meager.
But since U ⊆ O, it follows that A has the Baire property by Proposition 2.6.

This confirms that the definition of the “weak Baire property” is indeed the
appropriate one. We are now interested in the pointwise relationship between
determinacy and wBP(P). Just as in [Lö05] the feature characterizing P was
a notion called fatness (which was based on the interrelation between strate-
gies and members of P) we will present a similar characterization based on a
topological descriptions of strategies.

Consider a topological forcing P and the topological space (ηω, P). There
are three cases:

• Case 1. For every strategy σ, the set [σ] is somewhere open dense (i.e.
∃O s.t. ∀U ⊆ O ∃V ⊆ U ∩ [σ].

• Case 2. There is a strategy σ such that [σ] is nowhere dense.

• Case 3. Neither of the above: all strategies are somewhere dense but not
necessarily somewhere open dense.

Just as in [Lö05], we will be able to give a definitive answer for Case 1 and
Case 2 but not for Case 3. Unlike [Lö05], we will not be able to say anything
detailed about what goes on in Case 3, which we can only suggest for further
research.

Let us begin with the easiest case:
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4.13. Theorem. Let P be a topological forcing notion, and suppose that Case
1 holds, i.e., every strategy is somewhere open dense. Then determinacy implies
wBP(P) pointwise.

Proof. Let A be determined. Then there is either a strategy σ for I s.t. [σ] ⊆ A
or a strategy τ for II s.t. [τ ] ⊆ Ac. Suppose the former. Since [σ] is somewhere
open dense, let O be open such that ∀U ⊆ O ∃V ⊆ U ∩ [σ]. But then it is clear
that O \A is nowhere dense, since for all U ⊆ O there is a V ⊆ U ∩ [σ] ⊆ O∩A.
Similarly, if [τ ] ⊆ Ac then we find an open O such that O ∩A is nowhere dense.
This shows that A ∈ wBP(P).

The situation in Case 2 is noticeably more difficult, but can be resolved using
the techniques developed in Section 4.2. First, we need the following notion of
a generalized weak Marczewski-Burstin-algebra:

4.14. Definition. For a collectionA ⊆P(ηω), the generalized weak Marczewski-
Burstin algebra, denoted by wMB(A), is defined by

A ∈ wMB(A) :⇐⇒ ∃P ∈ A (P ⊆ A or P ⊆ Ac) C

The following is an analogue of the general Theorem 4.2. Condition 2 is the
formalization of the vague notion “A is different from Strat”.

4.15. Theorem. Suppose A is a collection such that

1. |A| ≤ 2ℵ0 and

2. There is some strategy σ s.t. ∀P ∈ A (|P \ [σ]| = 2ℵ0).

Then determinacy does not imply wMB(P) pointwise.18

Proof. Using an enumeration
〈

Pα | α < 2ℵ0
〉

of A, we get an enumeration

of
〈

Pα \ [σ] | α < 2ℵ0
〉

. Then, using Theorem 2.14 we can find two Bernstein
components A and B which are disjoint, intersect every Pα but are both disjoint
from [σ]. Then, let A′ := A ∪ [σ], so that either A′ or its complement is
determined but neither is in wMB(P) by construction.

4.16. Corollary. If Reg is some regularity property with Reg ⊆ wMB(A) and
A satisfies the conditions of Theorem 4.15, then determinacy does not imply
Reg pointwise.

Let us apply this to wBP(P). Using results from the previous section, we
can relate wBP(P) to the weak MB-algebra of perfect trees, wMB(PT). At
first, it is tempting to use the characterization wBP(P) ⊆ wMB(PT) and thus
show pointwise non-implication. The problem is that if we diagonalize against
all perfect trees, we also diagonalize against all strategies (since strategies are

18Note that this is a generalization of Theorem 4.4. from [Lö05].
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perfect trees). However, since at least one strategy σ is nowhere dense (Case
2), there is a way around that difficulty.

Given a strategy σ, define

PT¬σ := {[T ] | T is a perfect tree and [T ] ∩ [σ] = ∅}

i.e., all perfect trees that lie completely outside of σ.

4.17. Lemma. Let P be any non-atomic, topological forcing notion. Let σ be
a strategy such that [σ] is nowhere dense in the P-topology. Then wBP(P) ⊆
wMB(PT¬σ).

Proof. Let A ∈ wBP(P). Let O be open so that either O ∩ A or O \ A is
meager. Since the situation is clearly symmetric, suppose the latter. Now, since
[σ] is nowhere dense, there is an open U ⊆ O \ [σ]. Then U \A ⊆ O \A, hence
it is meager. Using Lemma 4.6. as in the previous section, we then find a Gδ

set C ⊆ U ∩ A and then a perfect tree T such that [T ] ⊆ C ⊆ A. But because
U ∩ [σ] = ∅ and [T ] ⊆ U , we also have T ∈ PT¬σ as required.

4.18. Theorem. Let P be any non-atomic, topological forcing notion and
suppose Case 2 holds, i.e., there is some σ with [σ] nowhere dense. Then deter-
minacy does not imply wBP(P) pointwise.

Proof. Choose that σ for which [σ] is nowhere dense. Then by Lemma 4.17
we have wBP(P) ⊆ wMB(PT¬σ), and the two conditions of Theorem 4.15 are
satisfied (with σ as the witness). Hence, the desired result follows.

Note that for all standard examples of topological forcings, namely C, D,
E and R, Case 2 applies, since in those topologies every strategy is in fact
nowhere dense. This, in any case, settles the question for the standard examples
encountered in the literature.

Conclusion, indications of further research.

We have proved that in all cases of interest, determinacy does not imply
the Baire property BP(P) pointwise. In the process we have also developed a
general method of proving pointwise non-implications for (symmetric) regularity
properties, which include the Baire property, the Marczewski-Burstin algebra,
Lebesgue measurability and potential new properties.

Based on a topological characterization of strategies in the space (ηω, P), we
were able to find cases when determinacy does, and when it does not, imply the
weak Baire property wBP(P) pointwise. We have left open the question of what
happens in the remaining Case 3, although that does not affect the solution
regarding the standard examples of topological forcings. Also, it is interesting
that all standard examples belong to Case 2.
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A suggestion for further research would be to study what exactly happens
in Case 3. It would be especially nice if we could find examples of forcings that
belong to Case 3 where pointwise implication holds, and other examples where
pointwise implication does not hold, analogously to the results [Lö05, Theorems
5.1, 5.2, 5.3, 6.4].

On the other hand, it might be interesting to find some condition which all
natural forcings P satisfy, and which would imply that P belongs either to Case
1 or Case 2.
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5. Determinacy and Asymmetric
Properties

In this chapter we deal with Main Question 3: the asymmetric regularity
properties. The classical and paradigmatic example is the Perfect Set Property.
In several papers, analogues of this idea have been developed. The aim of this
chapter is two-fold: firstly, we would like to find a general definition of the
asymmetric property of P, based on a generalization of the existing properties.
Secondly, we would like to do the same analysis about pointwise implications
from determinacy as we did in the previous chapter. We will not be able to define
Asym(P) as a simple combinatorial property derived from P. Instead, we will
give a game-theoretic definition of a very general kind of asymmetric property
which subsumes Asym(P). Then we will use this game characterization to show
that, under a certain non-triviality condition, determinacy does not imply the
asymmetric properties pointwise.

First we introduce and define the standard asymmetric properties, together
with their game characterizations. In the second section we give a general
definition for Asym(P), and finally, in the third section, we will analyze pointwise
implications from determinacy.

5.1 The Asymmetric Properties.

The Perfect Set Property says of a set A that it is either countable or con-
tains a perfect tree. With countability being a notion of “smallness” whereas
containing a perfect tree a notion of “largeness”, this property says of a set A
that it is “either large or small”. These ideas have been generalized to three
other asymmetric properties: Kσ-regularity, u-regularity and Laver-regularity,
in [Ke77], [Sp93] and [GoReShSp95], respectively. In each case, the asymmet-
ric property says of a set A that it is “either large or small”. By largeness is
meant: containing a certain type of tree, whereas by smallness various notions
are meant (defined independently for each case.) Connecting all of this to our
arboreal forcings, we think of the trees P ∈ P as corresponding to a partic-
ular notion of largeness. The traditional Perfect Set Property, for example,
corresponds to Sacks forcing, since it deals with perfect trees.

Let us start by giving the definitions we will require.

5.1. Definition.

• For two reals x, y ∈ η
ω, we define the pointwise ordering ≤ and the dom-

inating ordering ≤∗:

x ≤ y :⇐⇒ ∀n (x(n) ≤ y(n))

x ≤∗ y :⇐⇒ ∀∞n (x(n) ≤ y(n))
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• A set A ⊆ ωω is σ-bounded if there exists a bound f ∈ ωω such that
∀x ∈ A (x ≤∗ f).

• A set A ⊆ ωω is dominating if for every f ∈ ωω there is an x ∈ A such
that f ≤∗ x.

• A set A ⊆ ωω is strongly dominating if for every f ∈ ωω there is an x ∈ A
such that ∀∞n (x(n + 1) > f(x(n))) C

We can now proceed to define the standard asymmetric regularity properties.
The Perfect Set Property is classical, having originated from Cantor’s attempts
to solve the Continuum Hypothesis, and the others are due to [Ke77, p. 195 ff],
[Sp93, Definition 1.6] and [GoReShSp95, p. 1576 ff], respectively. The special
types of trees are defined in Definition 1.5.

5.2. Definition.

1. Perfect Set Property: A ⊆ η
ω contains a perfect tree or is countable.

2. Kσ-regularity: A ⊆ ωω contains a super-perfect tree or is σ-bounded.

3. u-regularity: A ⊆ ωω contains a Spinas tree or is not dominating.

4. Laver-regularity: A ⊆ ωω contains a Laver tree or is not strongly domi-
nating. C

Since each of these asymmetric properties deals with containing a tree from a
particular forcing partial order (namely Sacks, Miller, Spinas and Laver) we can
also denote them by Asym(S), Asym(M), Asym(L∗) and Asym(L), respectively.
Note that the Perfect Set Property can be defined on any η

ω but the other
properties must be defined on ωω to avoid triviality.

The one main feature connecting all these asymmetric properties is that
they have game characterizations, i.e., there is a game GP(A) such that I has
a winning strategy in GP(A) if and only if ∃P ∈ P([P ] ⊆ A). The “smallness”
property then corresponds to II having a winning strategy in that game.

The classical game associated to the Perfect Set Property is the ∗-game
G∗(A), and by the proof of Morton Davis [Da64], I has a winning strategy in
G∗(A) iff A contains a perfect tree and II has a winning strategy in G∗(A) iff
A is countable. Keeping in line with the original papers, the three other games
will be denoted by G̃(A), Gu(A) and D(A), respectively.

We will start by presenting Davis’s proof, because it is simple and represen-
tative for the whole theory. However, the problem with the ∗-game is that it
is played on 2ω, and the proof depends crucially on the property of that space.
We shall therefore present a slightly different game G•(A) which can be played
on any η

ω and proves the same result (and coincides with the ∗-game if played

40



on 2ω). It has the advantage of showing the underlying mechanism more per-
spicuously, and moreover the proof falls in line with other games and thus lends
itself naturally for generalizations.

5.3. Definition. The game G•(A) is played on any η
ω as follows:

• I plays non-empty sequences from η, and II plays elements of η.

I : s0 s1 s2 . . .
II : n1 n2 . . .

I wins if

• ∀i ≥ 1: si(0) 6= ni, and

• x := s0
_s1

_s2
_ · · · ∈ A.

5.4. Theorem (Davis, 1964).

1. I has a winning strategy in G•(A) iff A contains a perfect tree.

2. II has a winning strategy in G•(A) iff A is countable.

Proof.

1. If A contains a perfect tree, a strategy for I can informally be defined as
follows: “at each step, play si until the next splitting node. If II plays ni+1,
play si+1, staying in the tree, such that si+1(0) 6= ni+1 and until the next
splitting node.” Because we have a splitting node, choosing such an si+1 is
always possible.

Conversely, if σ is a winning strategy for I, then it is easy to see that {x | x is
a play according to σ} is a perfect set.

2. If A is countable, say A = {a0, a1, a2, . . . }, then II can play each ni to “lie
on ai” (at the corresponding digit), so that I is forced to avoid it.

The only interesting direction is the converse. Fix a winning strategy τ for
II. Let p be a partial play 〈s0, n1, s1, . . . , si−1, ni〉 according to τ , and let
p∗ := s0

_ . . . _si−1. For such p and x ∈ η
ω we say:

• p is compatible with x if p∗ ⊆ x and there exists an si such that si(0) 6= ni

and p∗_si ⊆ x (this just means that ni doesn’t “lie on x”).

• p rejects x if it is compatible with x and maximally so, i.e., for all si with
si(0) 6= ni, we have that p_ 〈si, ni+1 := τ(p_ 〈si〉)〉 is not compatible with
x.
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Define Kp := {x | p rejects x}. Clearly, if x ∈ A then there is a p which rejects
it, as otherwise I could continue playing si’s against τ and produce an x ∈ A,
contrary to τ being a winning strategy for II. Therefore A ⊆

⋃

p Kp, which is
a countable union since there are only countably many p’s. But now we claim
that each Kp contains just one element. For suppose x, y ∈ Kp with x 6= y.
Then p is compatible with x and y, so let si be maximal such s.t. p∗_si ⊆ x
and p∗_si ⊆ y. Then consider ni+1 := τ(p_ 〈si〉). Clearly, ni+1 cannot lie on
both x and y, so p_ 〈si, ni+1〉 is still compatible with either x or y. Therefore,
x and y cannot both be in Kp.

Therefore, A ⊆
⋃

p Kp is a countable union of singletons, hence A is countable.

We now define the three other games and give the corresponding theorems
(without proof) stating the relationship with the asymmetric properties.

5.5. Definition. The game G̃(A) is played as follows:

• I plays non-empty sequences from ω, and II plays natural numbers.

I : s0 s1 s2 . . .
II : n1 n2 . . .

I wins if

• ∀i ≥ 1: si(0) ≥ ni, and

• x := s0
_s1

_s2
_ · · · ∈ A.

The next game, Gu(A), is as follows:

• I plays pairs (si, ki) where si ∈ ω<ω \ {∅} and ki ∈ ω \ {0}, and II plays
elements of ω.

I : (s0, k0) (s1, k1) (s2, k2) . . .
II : n1 n2 . . .

I wins if

• ∀i ≥ 1 : |si| = ki−1

• ∀i ≥ 1: si(0) ≥ ni, and

• x := s0
_s1

_s2
_ · · · ∈ A.

Finally, D(A) is as follows:

• I first plays a non-empty sequences, then natural numbers, and II always
plays natural numbers.

I : s0 k1 k2 . . .
II : n1 n2 . . .
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I wins if

• ∀i ≥ 1: ki > ni, and

• x := s0
_ 〈k1, k2, . . . 〉 ∈ A. C

5.6. Theorem.

1. (a) I wins G̃(A) if and only if A contains a super-perfect tree.

(b) II wins G̃(A) if and only if A is σ-bounded.

2. (a) I wins Gu(A) if and only if A contains a Spinas tree.

(b) II wins Gu(A) if and only if A is not dominating.

3. (a) I wins D(A) if and only if A contains a Laver tree.

(b) II wins D(A) if and only if A is not strongly dominating.

Proof.

1. [Ke77, Theorem 3.1]. The proof is completely analogous to the proof of
Theorem 5.4 except that each Kp is no longer a singleton, but bounded
(i.e. ∃f ∈ ωω s.t. ∀x ∈ Kp (x ≤∗ f)).

2. [Sp93, Theorem 1.4].

3. [GoReShSp95, Lemma 2.3].

It is easy to show that all four games can be encoded as standard integer-
games, and that the encoding involved is such that the relevant sets stay within
a boldface pointclass Γ. Thus, following the ideas of Section 2.3, we get the
following:

5.7. Corollary. Determinacy implies the Perfect Set Property, Kσ-regularity,
u-regularity and Laver-regularity classwise.

5.2 The General Definition of Asym(P).

We have defined the four regularity properties Asym(S), Asym(M), Asym(L∗)
and Asym(L). The natural question is: can a general definition of Asym(P) be
given for arbitrary P? Ideally, Asym(P) should be some explicitly defined com-
binatorial property derived from P, valid for any given P. So far we have not
been able to find such a definition.

However, as the previous section illustrates, each asymmetric property has
a game characterization, and all those games have one thing in common: they
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are asymmetric in the sense that I and II play different moves, with II playing
“requirements” which I must “satisfy”. Thus, the idea of the asymmetric game
characterization can be understood as follows: II tries to set challenges which
I must overcome while staying within a set A. If I can always do that then
A is “large”. On the other hand, if II has a way of setting challenges which I
cannot overcome and stay within A, then A is “small”.

We will now make this idea precise by defining a class of general asymmetric
games, which will be used to defined general asymmetric properties based on
those games. In some cases, these general asymmetric properties will correspond
to Asym(P) for particular forcing notions P. Although this does not uniquely
define Asym(P), it does give a necessary condition which all Asym(P) must
certainly satisfy in order to qualify for that name. This condition will be enough
to prove pointwise non-implication for all Asym(P) in Theorem 5.12.

The inspiration for the general asymmetric games comes from [Ke77, p. 203
ff] where Kechris introduces a general class of games, as well as an asymmetric
property connected to them, meant to generalize Davis’s ∗-game, the Banach-
Mazur game and his own G̃-game. Essentially, the games are defined as follows:
I plays non-empty sequences of integers and II plays requirements: collections
of non-empty sequences from which I must pick one in the next move. But the
Kechris games are not sufficient for our purpose, because they do not include the
two other asymmetric games Gu(A) and D(A) connected with u-regularity and
Laver-regularity. We will therefore expand Kechris’s definition to the following
definition:

5.8. Definition. We define a class of general asymmetric games. Each game
is based on a set of parameters Φ := (R, r0, {Θn}n∈ω, f) where

• R ⊆P(η<ω) is a countable set of requirements.

• r0 ⊆ η
<ω is the initial requirement.

• The Θi are countable sets of additional information, which may, in prin-
ciple, contain any sort of objects.

• f :
⋃

n Θn −→P(R).

Then the game GΦ(A) is defined as follows:

In each move player I plays a non-empty sequence si and, optionally, some
θi ∈ Θi (an additional piece of information). Player II responds by playing
a requirement from R ∩ f(θi), i.e., he or she may play any requirement from
R but a restriction may be imposed upon his or her choice, depending on the
information θi played by I in the previous move.

I : (s0, θ0) (s1, θ1) (s2, θ2) . . .
II : r1 ∈ R ∩ f(θ0) r2 ∈ R ∩ f(θ1) . . .

I wins GΦ(A) iff
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• s0 ∈ r0,

• ∀i ≥ 1 : si ∈ ri and

• x := s0
_s1

_s2
_ · · · ∈ A. C

Using this formal definition, the game Gu(A) can be rendered in this form
by setting

• R := {r0, r1, . . . } with ri := {s ∈ ω<ω | s(0) ≥ i}

• r0 := ω<ω \ {∅}

• Θn := ω for all n

• f(n) := {s ∈ ω<ω | |s| = n}

Similarly, D(A) becomes:

• R := {r0, r1, . . . } with ri := {s ∈ ω<ω | s = 〈n〉 for some n > i}

• r0 := ω<ω \ {∅}

• Θn and f are not used.

We will never need to write out such definitions of asymmetric games, since in
practice more perspicuous definitions are available. Intuitively, we are allowed
to define all kinds of games, where interdependencies between I’s and II’s moves
may take an arbitrary level of complexity (encoded via R, r0, Θn and f), but the
important thing is that player I keeps playing non-empty sequences throughout,
which will eventually be part of the real x produced in the limit, and that the
winning condition depends on whether x ∈ A or not. In this sense, the progress
of a particular play corresponds to a progress deeper into the tree, with no
possibilities to “take back moves” or something alike.

The asymmetric games may, or may not, be connected to forcing partial
orders P. We use the following definition:

5.9. Definition. Let P be some arboreal forcing notion, and let GΦ be a
general asymmetric game. We say that GΦ represents P if

∀A ⊆ η
ω (I has a winning strategy in GΦ(A) iff ∃P ∈ P ([P ] ⊆ A)). C

This leads naturally to the following definition:

5.10. Definition. Let P be some arboreal forcing notion and let GΦ be an
asymmetric game which represents P. Then we define the asymmetric property
of P generated by Φ, denoted by AsymΦ(P), by

A ∈ AsymΦ(P) :⇐⇒ ∃P ∈ P ([P ] ⊆ A) ∨ II wins GΦ(A). C
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Note that this is not an abstract definition of Asym(P) derived from P as we
had envisaged it beforehand (in the same style as BP(P), MB(P) etc.) There
may be P which cannot be represented by any GΦ, and similarly there are P

which can be represented by various GΦ, so that there is not one well-defined
asymmetric property related to P. For a particular example of the latter case,
consider the game G](A) defined as follows:

• I plays non-empty sequences and two natural numbers > 0; II plays natural
numbers.

I : (s0, k0, l0) (s1, k1, l1) (s2, k2, l2) . . .
II : n1 n2 . . .

I wins iff

• ∀i ≥ 1 (si(0) 6= ni),

• ∀i ≥ 1 (|si| = ki−1 or |si| = li−1) and

• x := s0
_s1

_ · · · ∈ A.

Clearly, this can be rendered as a general asymmetric game. Also, it is easy to
check that this game actually represents Sacks forcing S, just like G•(A) from
Theorem 5.4, although it is clearly different from G•(A) (in particular, the proof
of Davis would not work with this game since we can no longer conclude that
Kp := {x | p rejects x} is a singleton). So G•(A) and G](A) are two distinct
games both of which represent S.

Regardless of this, our definition still gives a precise condition which every
asymmetric property Asym(P), whatever its potential definition, must certainly
satisfy.

5.3 Determinacy and Asym(P).

Using the notion of GΦ-representation and the corresponding asymmetric
property, we can now prove that determinacy does not imply AsymΦ(P) point-
wise. Essentially, the main observation is that the asymmetric games GΦ are
different from standard games (in the sense of Definition 2.7). This difference
will be sufficient to prove pointwise non-implication by diagonalizing directly
against strategies.

To deal more easily with the different types of perfect trees, we can de-
fine a weaker version of the asymmetric property wAsymΦ(P) by replacing the
condition “contains a P ∈ P” by the weaker condition “contains a perfect tree”.
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5.11. Definition. Given a forcing notion P and an asymmetric game GΦ which
represents P, the weak asymmetric property wAsymΦ(P) is defined by:

A ∈ wAsymΦ(P) :⇐⇒
A contains a perfect tree

or
II has a winning strategy in GΦ(A). C

Since all P we are interested in have perfect trees as conditions, AsymΦ(P) ⊆
wAsymΦ(P), and hence, if D 6⊆ wAsymΦ(P) then also D 6⊆ AsymΦ(P). It is thus
sufficient to show the former.

Assuming one very simple non-triviality condition on the games, we will
prove pointwise non-implication.

5.12. Theorem. Let P be an arboreal forcing notion represented by an asym-
metric game GΦ. Suppose GΦ is non-trivial in the following sense: in all except
finitely many positions of the game, player I has a choice of playing at least
two sequences s and t which are incompatible (i.e. s 6⊆ t and t 6⊆ s). Then
determinacy does not imply wAsymΦ(P) pointwise.

Proof. First of all, note that by definition of arboreal forcings P, for every
n there is a P ∈ P with |stem(P)| ≥ n. This means that, whatever the other
properties of the game GΦ, for every n we can find an s ∈ η

<ω with |s| ≥ n
such that player I can make sure that s is eventually played, regardless of the
strategy II is currently using (in all our examples, this s can be played in I’s
first move). Now fix any such s with |s| ≥ 2. Then it immediately follows that
there is a (standard) strategy σ for II such that s /∈ σ. Fix this σ.

Now let {Tα | α < 2ℵ0} be an enumeration of all perfect trees, and {τα | α <
2ℵ0} an enumeration of all strategies for II in the game GΦ. For each α, let
Kα := {x ∈ η

ω | s ⊆ x ∧ x is the result of a GΦ-game according to τα}. Now,
by the condition on the ability of I to have at least two choices infinitely many
times during a run of the game, it follows that |Kα| = 2ℵ0 . Also, Kα ∩ [σ] = ∅

for all α.

By induction on 2ℵ0 we construct two disjoint Bernstein components A and B
similarly as in Theorem 2.14 but with a slight extra: At each step α, suppose
we have already constructed Aα and Bα with |Aα| = |Bα| = |α| < 2ℵ0 . Then
Kα \ (Aα ∪Bα) still has 2ℵ0 elements to choose from, so we choose some aα+1

out of it. Then, [Tα] \ (Aα ∪Bα ∪{aα+1}) still has 2ℵ0 elements to choose from,
so we choose some bα+1 out of it. Then we set Aα+1 := A∪{aα+1} and Bα+1 :=
B ∪ {bα+1} as usual. Finally, we set A :=

⋃

α<2ℵ0 Aα and B :=
⋃

α<2ℵ0 Bα.

Then:

• A ∩ [σ] = ∅ by construction, so A is determined (in the standard sense).

• A doesn’t contain a perfect tree, because B intersects every perfect tree
and A ∩B = ∅.
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• II doesn’t have a winning strategy in the game GΦ because for every
strategy τα, there is a play according to τα, namely aα, which is in A.

Therefore determinacy does not imply the weak asymmetric property for P,
wAsymΦ(P).

This means that, in particular, determinacy does not imply the Perfect
Set Property, Kσ-regularity, u-regularity and Laver-regularity pointwise. Also,
because of the weakening to wAsym, any other combination of “P-largeness”
with “Q-smallness”, like e.g. the notion of w-regularity briefly introduced in
[BrHjSp95, p. 299], is covered here as well.

Conclusion, indication of further research.

The first part of Main Question 3 proved to be more subtle than expected.
We were able to give a definition of general asymmetric games GΦ which seem
to adequately generalize the four standard asymmetric games. Using these
games we were able to define AsymΦ(P) for those P which are represented by
an asymmetric game GΦ.

Using this definition we answered the second part of Question 3, namely,
we proved that in all non-trivial cases determinacy does not imply AsymΦ(P)
pointwise.

There are several questions still left open. Firstly, it is not clear whether all
P are GΦ-representable. Because the nature of our asymmetric games is such
that the players, as it were, only “look deeper inside the tree”, in seems likely
that many P are not GΦ-representable. In particular, we conjecture that Silver
forcing V is not GΦ-representable. Perhaps it is also possible to find conditions
on P which imply that it is, or is not, GΦ-representable, and maybe something
can even be said about a canonical way of deriving GΦ from P.

Secondly, although we did mentioned that there can be distinct Φ1 and Φ2

such that both GΦ1 and GΦ2 represent P, it would be nice to find examples for
which we can prove that AsymΦ1

(P) 6= AsymΦ2
(P).

Another question is, of course, whether Asym(P) could be defined in some
other way, hopefully using a direct derivation from P. Such a definition might,
again, have its basis in infinite games, or it might be a purely combinatorial
definition. If such a definition exists, it would be interesting to see what the
relationship is between that definition and our definition of AsymΦ(P).

∗
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