Forcing and Independence Proofs: Martin's Axiom

Annica Vieser February 3, 2023

- 1. Formulation of Martin's Axiom.
- 2. Martin's Axiom and CH.
- 3. An equivalent to MA in terms of BAs.

- 1. Formulation of Martin's Axiom.
- 2. Martin's Axiom and CH.
- 3. An equivalent to MA in terms of BAs.

Definitions DSL, Lemma III.3.7 $i: \mathbb{P} \rightarrow \mathbb{B}$

• A forcing poset is a triple $(\mathbb{P}, \leq, \mathbb{1})$ such that \leq is a preorder on \mathbb{P} and $\mathbb{1} \in \mathbb{P}$ is a largest element $(\forall p \in \mathbb{P} \ p \leq \mathbb{1})$.

- A forcing poset is a triple $(\mathbb{P}, \leq, \mathbb{1})$ such that \leq is a preorder on \mathbb{P} and $\mathbb{1} \in \mathbb{P}$ is a largest element $(\forall p \in \mathbb{P} \ p \leq \mathbb{1})$.
- p,q ∈ P are incompatible (p ⊥ q) iff they have no common extension (¬∃r ∈ P (r ≤ p ∧ r ≤ q)). An antichain is a subset A ⊆ P whose elements are pairwise incompatible. P has the countable chain condition iff every antichain in P is countable.

- A forcing poset is a triple $(\mathbb{P}, \leq, \mathbb{1})$ such that \leq is a preorder on \mathbb{P} and $\mathbb{1} \in \mathbb{P}$ is a largest element $(\forall p \in \mathbb{P} \ p \leq \mathbb{1})$.
- $p, q \in \mathbb{P}$ are *incompatible* $(p \perp q)$ iff they have no common extension $(\neg \exists r \in \mathbb{P} \ (r \leq p \land r \leq q))$. An *antichain* is a subset $A \subseteq \mathbb{P}$ whose elements are pairwise incompatible. \mathbb{P} has the *countable chain condition* iff every antichain in \mathbb{P} is countable.
- $D \subseteq \mathbb{P}$ is dense in \mathbb{P} iff $\forall p \in \mathbb{P} \ \exists q \in D \ q \leq p$.

- A forcing poset is a triple $(\mathbb{P}, \leq, \mathbb{1})$ such that \leq is a preorder on \mathbb{P} and $\mathbb{1} \in \mathbb{P}$ is a largest element $(\forall p \in \mathbb{P} \ p \leq \mathbb{1})$.
- p,q ∈ P are incompatible (p ⊥ q) iff they have no common extension (¬∃r ∈ P (r ≤ p ∧ r ≤ q)). An antichain is a subset A ⊆ P whose elements are pairwise incompatible. P has the countable chain condition iff every antichain in P is countable.
- $D \subseteq \mathbb{P}$ is *dense* in \mathbb{P} iff $\forall p \in \mathbb{P} \ \exists q \in D \ q \leq p$.
- $G \subseteq \mathbb{P}$ is a *filter* on \mathbb{P} iff
 - $\mathbb{1} \in G$.
 - $\forall p, q \in G \ \exists r \in G \ (r \leq p \land r \leq q).$
 - $\forall p, q \in \mathbb{P} \ (q \leq p \land q \in G \to p \in G).$

Example

For any I, J: $\operatorname{En}(I, J)$ is the set of all *finite partial functions* from I to J; that is $p \in \operatorname{En}(I, J)$ iff $p \in [I \times J]^{<\omega}$ and p is the graph of a function. We make $\operatorname{En}(I, J)$ into a forcing poset by letting $\leq be \supseteq$ and $\mathbb{1} = \emptyset$.

Example

For any I, J: $\operatorname{Fn}(I, J)$ is the set of all *finite partial functions* from I to J; that is $p \in \operatorname{Fn}(I, J)$ iff $p \in [I \times J]^{<\omega}$ and p is the graph of a function. We make $\operatorname{Fn}(I, J)$ into a forcing poset by letting \leq be \supseteq and $\mathbb{1} = \emptyset$. For $\mathbb{P} = \operatorname{Fn}(\omega, \omega)$,

- $\{(0,0)\}, \{(1,0)\}, \{(0,1)\} \in \mathbb{P};$
- $\{(0,0)\} \not \preceq \{(1,0)\}$ since $\{(0,0),(1,0)\}$ is a common extension;
- $\{(0,0)\} \perp \{(0,1)\};$
- $D = \{p \in \mathbb{P} : \exists k \in \mathbb{N} | \operatorname{dom}(p) | = 2k\}$ is dense in \mathbb{P} ;
- $G = \{p \in \mathbb{P} : 1 \notin \mathsf{dom}(p)\}$ is a filter on \mathbb{P} .

- $MA_{\mathbb{P}}(\kappa)$ is the statement that whenever \mathcal{D} is a family of dense subsets of \mathbb{P} with $|\mathcal{D}| \leq \kappa$, there exists a filter G on \mathbb{P} such that $G \cap D \neq \emptyset$ for all $D \in \mathcal{D}$.
- $MA(\kappa)$ is the statement that $MA_{\mathbb{P}}(\kappa)$ holds for all ccc posets \mathbb{P} .
- MA is the statement $\forall \kappa < \mathfrak{c} MA(\kappa)$.

Lemma (III.3.13)

 $MA(\kappa)$ fails for $\kappa \ge \mathfrak{c}$.

Lemma (III.3.14)

 $MA(\kappa)$ holds for $\kappa = \aleph_0$.

A family of sets \mathcal{A} forms a *delta system* with *root* R iff $X \cap Y = R$ whenever $X, Y \in \mathcal{A}$ with $X \neq Y$.

Lemma (Delta System)

Let κ be an uncountable regular cardinal, and let \mathcal{A} be a family of finite sets with $|\mathcal{A}| = \kappa$. Then there is a $\mathcal{B} \in [\mathcal{A}]^{\kappa}$ such that \mathcal{B} forms a delta system.

A family of sets \mathcal{A} forms a *delta system* with *root* R iff $X \cap Y = R$ whenever $X, Y \in \mathcal{A}$ with $X \neq Y$.

Lemma (Delta System)

Let κ be an uncountable regular cardinal, and let \mathcal{A} be a family of finite sets with $|\mathcal{A}| = \kappa$. Then there is a $\mathcal{B} \in [\mathcal{A}]^{\kappa}$ such that \mathcal{B} forms a delta system.

Lemma (III.3.7)

Fn(I, J) has the ccc iff $I = \emptyset$ or J is countable.

A family of sets \mathcal{A} forms a *delta system* with *root* R iff $X \cap Y = R$ whenever $X, Y \in \mathcal{A}$ with $X \neq Y$.

Lemma (Delta System)

Let κ be an uncountable regular cardinal, and let \mathcal{A} be a family of finite sets with $|\mathcal{A}| = \kappa$. Then there is a $\mathcal{B} \in [\mathcal{A}]^{\kappa}$ such that \mathcal{B} forms a delta system.

Lemma (III.3.7)

Fn(I, J) has the ccc iff $I = \emptyset$ or J is countable.

Lemma (III.3.13)

 $MA(\kappa)$ fails for $\kappa \ge \mathfrak{c}$.

Lemma (III.3.13)

 $MA(\kappa)$ fails for $\kappa \ge \mathfrak{c}$.

Lemma (III.3.14)

 $MA(\kappa)$ holds for $\kappa = \aleph_0$.

Lemma (III.3.13)

 $MA(\kappa)$ fails for $\kappa \ge \mathfrak{c}$.

Lemma (III.3.14)

 $MA(\kappa)$ holds for $\kappa = \aleph_0$.

- $CH \rightarrow MA$.
- ZFC + MA + \neg CH is consistent. (Proof uses iterated forcing.)
- By identifying certain small cardinals with c, MA puts restrictions on what c can be. E.g., if MA holds then c is regular.

For any infinite cardinal κ , the following are equivalent:

- 1. $MA(\kappa)$.
- 2. $MA_{\mathbb{B}}(\kappa)$ holds for all complete ccc Boolean algebras \mathbb{B} .

A Boolean algebra is a structure $(\mathbb{B},\neg,\vee,\wedge,\mathbb{0},\mathbb{1})$ such that

- $\bullet \leq is a partial order$
- For every $a, b \in \mathbb{B}$, $a \wedge b$ and $a \vee b$ exist
- distributivity of \wedge and $\,\vee\,$
- For all $b \in \mathbb{B}, \mathbb{0} \leq d \leq 1$
- For all $b \in \mathbb{B}$ there is a complement $\neg b$ ($b \land \neg b = 0$, $b \lor \neg b = 1$)

 \mathbb{B} is *complete* if for every $S \subseteq \mathbb{B}$, $\inf(S)$ and $\sup(S)$ exist.

A Boolean algebra is a structure $(\mathbb{B},\neg,\vee,\wedge,\mathbb{0},\mathbb{1})$ such that

- $\bullet \leq is a partial order$
- For every $a, b \in \mathbb{B}$, $a \wedge b$ and $a \vee b$ exist
- distributivity of \wedge and $\,\vee\,$
- For all $b \in \mathbb{B}, \mathbb{0} \leqslant b \leqslant \mathbb{1}$
- For all $b \in \mathbb{B}$ there is a complement $\neg b$ ($b \land \neg b = 0$, $b \lor \neg b = 1$)

 \mathbb{B} is *complete* if for every $S \subseteq \mathbb{B}$, $\inf(S)$ and $\sup(S)$ exist.

If $\mathbb B$ is a Boolean algebra, then $\mathbb B$ and $\mathbb B\backslash\{0\}$ are forcing posets.

A Boolean algebra is a structure $(\mathbb{B},\neg,\vee,\wedge,\mathbb{0},\mathbb{1})$ such that

- $\bullet \leq is a partial order$
- For every $a, b \in \mathbb{B}$, $a \wedge b$ and $a \vee b$ exist
- distributivity of \wedge and $\,\vee\,$
- For all $b \in \mathbb{B}, \mathbb{0} \leqslant b \leqslant \mathbb{1}$
- For all $b \in \mathbb{B}$ there is a complement $\neg b$ ($b \land \neg b = 0$, $b \lor \neg b = 1$)

 \mathbb{B} is *complete* if for every $S \subseteq \mathbb{B}$, $\inf(S)$ and $\sup(S)$ exist.

If $\mathbb B$ is a Boolean algebra, then $\mathbb B$ and $\mathbb B\backslash\{0\}$ are forcing posets.

For $p, q \in \mathbb{B} \setminus \{0\}$, $p \perp q$ iff $p \land q = 0$.

A Boolean algebra is a structure $(\mathbb{B},\neg,\vee,\wedge,\mathbb{0},\mathbb{1})$ such that

- $\bullet \leq is a partial order$
- For every $a, b \in \mathbb{B}$, $a \wedge b$ and $a \vee b$ exist
- distributivity of \wedge and $\,\vee\,$
- For all $b \in \mathbb{B}, \mathbb{0} \leqslant b \leqslant \mathbb{1}$
- For all $b \in \mathbb{B}$ there is a complement $\neg b$ ($b \land \neg b = 0$, $b \lor \neg b = 1$)

 \mathbb{B} is *complete* if for every $S \subseteq \mathbb{B}$, $\inf(S)$ and $\sup(S)$ exist.

If \mathbb{B} is a Boolean algebra, then \mathbb{B} and $\mathbb{B} \setminus \{0\}$ are forcing posets.

For $p, q \in \mathbb{B} \setminus \{0\}$, $p \perp q$ iff $p \land q = 0$.

If $\mathbb B$ is an atomless BA, then $\mathbb B\backslash\{0\}$ is an atomless forcing poset.

For any infinite cardinal κ , the following are equivalent:

- 1. $MA(\kappa)$.
- 2. $MA_{\mathbb{B}}(\kappa)$ holds for all complete ccc Boolean algebras \mathbb{B} .

For any infinite cardinal κ , the following are equivalent:

- 1. $MA(\kappa)$.
- 2. $MA_{\mathbb{B}}(\kappa)$ holds for all complete ccc Boolean algebras \mathbb{B} .

Proof strategy: Mapping an arbitrary poset into a complete BA.

For any infinite cardinal κ , the following are equivalent:

- 1. $MA(\kappa)$.
- 2. $MA_{\mathbb{B}}(\kappa)$ holds for all complete ccc Boolean algebras \mathbb{B} .

Proof strategy: Mapping an arbitrary poset into a complete BA.

Lemma (1)

For every forcing poset \mathbb{P} , there is a complete BA \mathbb{B} and a dense embedding $i: \mathbb{P} \to \mathbb{B} \setminus \{0\}.$

For any infinite cardinal κ , the following are equivalent:

- 1. $MA(\kappa)$.
- 2. $MA_{\mathbb{B}}(\kappa)$ holds for all complete ccc Boolean algebras \mathbb{B} .

Proof strategy: Mapping an arbitrary poset into a complete BA.

Lemma (1)

For every forcing poset \mathbb{P} , there is a complete BA \mathbb{B} and a dense embedding $i: \mathbb{P} \to \mathbb{B} \setminus \{0\}.$

Lemma (2)

Let $i : \mathbb{Q} \to \mathbb{P}$ be a dense embedding. Then $MA_{\mathbb{P}}(\kappa)$ implies $MA_{\mathbb{Q}}(\kappa)$.

Let \mathbb{P} and \mathbb{Q} be forcing posets and $i: \mathbb{Q} \to \mathbb{P}$. Then i is a *dense embedding* iff:

i(1_Q) = 1_P.
 ∀q₁, q₂ ∈ Q [q₁ ≤_Q q₂ → i(q₁) ≤_P i(q₂)].
 ∀q₁, q₂ ∈ Q [q₁ ⊥_Q q₂ ↔ i(q₁) ⊥_P i(q₂)].
 i(Q) is a dense subset of P.

Let \mathbb{P} and \mathbb{Q} be forcing posets and $i: \mathbb{Q} \to \mathbb{P}$. Then i is a *dense embedding* iff:

i(1_Q) = 1_P.
 ∀q₁, q₂ ∈ Q [q₁ ≤_Q q₂ → i(q₁) ≤_P i(q₂)].
 ∀q₁, q₂ ∈ Q [q₁ ⊥_Q q₂ ↔ i(q₁) ⊥_P i(q₂)].
 i(Q) is a dense subset of P.

Example

Let $\mathbb{P} = \mathsf{Fn}(\omega, \omega)$.

• Let $\mathbb{T} = \{p \in \mathbb{P} : \operatorname{dom}(p) \in \omega\}$. Then $i : \mathbb{T} \to \mathbb{P}$ with i(p) = p is a dense embedding.

Let \mathbb{P} and \mathbb{Q} be forcing posets and $i: \mathbb{Q} \to \mathbb{P}$. Then i is a *dense embedding* iff:

i(1_Q) = 1_P.
 ∀q₁, q₂ ∈ Q [q₁ ≤_Q q₂ → i(q₁) ≤_P i(q₂)].
 ∀q₁, q₂ ∈ Q [q₁ ⊥_Q q₂ ↔ i(q₁) ⊥_P i(q₂)].
 i(Q) is a dense subset of P.

Example

Let $\mathbb{P} = \mathsf{Fn}(\omega, \omega)$.

- Let $\mathbb{T} = \{p \in \mathbb{P} : \operatorname{dom}(p) \in \omega\}$. Then $i : \mathbb{T} \to \mathbb{P}$ with i(p) = p is a dense embedding.
- Let $\mathbb{T} = (\mathbb{N}, \ge)$. Then there cannot be an embedding $i : \mathbb{P} \to \mathbb{T}$; and there cannot be a *dense* embedding $\mathbb{T} \to \mathbb{P}$.

If \mathbb{P} is a forcing poset, the *poset topology* on \mathbb{P} is defined by $\mathcal{T}_{\mathbb{P}} = \{U \subseteq \mathbb{P} : \forall s \in U(s \downarrow \subseteq U)\}.$

Recall: $s \downarrow = \{x \in \mathbb{P} : x \leq_{\mathbb{P}} s\}.$

If \mathbb{P} is a forcing poset, the *poset topology* on \mathbb{P} is defined by $\mathcal{T}_{\mathbb{P}} = \{U \subseteq \mathbb{P} : \forall s \in U(s \downarrow \subseteq U)\}.$

Recall: $s \downarrow = \{x \in \mathbb{P} : x \leq_{\mathbb{P}} s\}.$

Example

If \mathbb{P} is a forcing poset, the *poset topology* on \mathbb{P} is defined by $\mathcal{T}_{\mathbb{P}} = \{U \subseteq \mathbb{P} : \forall s \in U(s \downarrow \subseteq U)\}.$

Recall: $s \downarrow = \{x \in \mathbb{P} : x \leq_{\mathbb{P}} s\}.$

Example

•
$$\{p: p(1) = 0\} \in \mathcal{T}_{\mathbb{P}};$$

If \mathbb{P} is a forcing poset, the *poset topology* on \mathbb{P} is defined by $\mathcal{T}_{\mathbb{P}} = \{U \subseteq \mathbb{P} : \forall s \in U(s \downarrow \subseteq U)\}.$

Recall:
$$s \downarrow = \{x \in \mathbb{P} : x \leq_{\mathbb{P}} s\}.$$

Example

- $\{p: p(1) = 0\} \in \mathcal{T}_{\mathbb{P}};$
- $\{p: 1 \in \operatorname{ran}(p)\} \in \mathcal{T}_{\mathbb{P}};$

If \mathbb{P} is a forcing poset, the *poset topology* on \mathbb{P} is defined by $\mathcal{T}_{\mathbb{P}} = \{U \subseteq \mathbb{P} : \forall s \in U(s \downarrow \subseteq U)\}.$

Recall:
$$s \downarrow = \{x \in \mathbb{P} : x \leq_{\mathbb{P}} s\}.$$

Example

- $\{p: p(1) = 0\} \in \mathcal{T}_{\mathbb{P}};$
- $\{p: 1 \in \operatorname{ran}(p)\} \in \mathcal{T}_{\mathbb{P}};$
- $\{\{(1,0)\}\}\notin\mathcal{T}_{\mathbb{P}}$;

If \mathbb{P} is a forcing poset, the *poset topology* on \mathbb{P} is defined by $\mathcal{T}_{\mathbb{P}} = \{U \subseteq \mathbb{P} : \forall s \in U(s \downarrow \subseteq U)\}.$

Recall:
$$s \downarrow = \{x \in \mathbb{P} : x \leq_{\mathbb{P}} s\}.$$

Example

- $\{p: p(1) = 0\} \in \mathcal{T}_{\mathbb{P}};$
- $\{p: 1 \in \operatorname{ran}(p)\} \in \mathcal{T}_{\mathbb{P}};$
- $\{\{(1,0)\}\}\notin\mathcal{T}_{\mathbb{P}}$;
- $\{p: \exists k \in \mathbb{N} | \mathsf{dom}(p)| = 2k\} \notin \mathcal{T}_{\mathbb{P}}.$

Definition

Let X be a non-empty topological space. Then its *regular open algebra*, ro(X), is the set of all $U \subseteq X$ that are both open and *regular* (U = int(cl(U))). The $\leq, \land, 0, 1$ are $\subseteq, \cap, \emptyset, X$, respectively. $U \lor V = int(cl(U \cup V))$ and $\neg U = int(X \backslash U)$.

ro(X) is always complete.

Definition

Let X be a non-empty topological space. Then its *regular open algebra*, ro(X), is the set of all $U \subseteq X$ that are both open and *regular* (U = int(cl(U))). The $\leq, \land, 0, 1$ are $\subseteq, \cap, \emptyset, X$, respectively. $U \lor V = int(cl(U \cup V))$ and $\neg U = int(X \backslash U)$.

 $\mathsf{ro}(X) \text{ is always complete. } \mathsf{int}(\mathsf{cl}(U)) = \{x : \forall y, y \leqslant x \; \exists z, z \leqslant y \; z \in U\}$

Example

Consider $(\mathbb{P}, \mathcal{T}_{\mathbb{P}})$ with $\mathbb{P} = \mathsf{Fn}(\omega, \omega)$.

• For $U = \{p : p(1) = 0\}$:

Definition

Let X be a non-empty topological space. Then its *regular open algebra*, ro(X), is the set of all $U \subseteq X$ that are both open and *regular* (U = int(cl(U))). The $\leq, \land, 0, 1$ are $\subseteq, \cap, \emptyset, X$, respectively. $U \lor V = int(cl(U \cup V))$ and $\neg U = int(X \backslash U)$.

 $\mathsf{ro}(X) \text{ is always complete. } \mathsf{int}(\mathsf{cl}(U)) = \{x : \forall y, y \leqslant x \; \exists z, z \leqslant y \; z \in U\}$

Example

• For
$$U = \{p : p(1) = 0\}$$
:
 $cl(U) = \{p : p(1) = 0 \lor 1 \notin dom(p)\}$.

Definition

Let X be a non-empty topological space. Then its *regular open algebra*, ro(X), is the set of all $U \subseteq X$ that are both open and *regular* (U = int(cl(U))). The $\leq, \land, 0, 1$ are $\subseteq, \cap, \emptyset, X$, respectively. $U \lor V = int(cl(U \cup V))$ and $\neg U = int(X \backslash U)$.

 $\mathsf{ro}(X) \text{ is always complete. } \mathsf{int}(\mathsf{cl}(U)) = \{x : \forall y, y \leqslant x \; \exists z, z \leqslant y \; z \in U\}$

Example

• For
$$U = \{p : p(1) = 0\}$$
:
 $cl(U) = \{p : p(1) = 0 \lor 1 \notin dom(p)\}$.
 $int(cl(U)) = U$.

Definition

Let X be a non-empty topological space. Then its *regular open algebra*, ro(X), is the set of all $U \subseteq X$ that are both open and *regular* (U = int(cl(U))). The $\leq, \land, 0, 1$ are $\subseteq, \cap, \emptyset, X$, respectively. $U \lor V = int(cl(U \cup V))$ and $\neg U = int(X \backslash U)$.

 $\mathsf{ro}(X) \text{ is always complete. } \mathsf{int}(\mathsf{cl}(U)) = \{x : \forall y, y \leqslant x \; \exists z, z \leqslant y \; z \in U\}$

Example

• For
$$U = \{p : p(1) = 0\}$$
:
 $cl(U) = \{p : p(1) = 0 \lor 1 \notin dom(p)\}$.
 $int(cl(U)) = U$.
So $U \in ro(\mathbb{P})$.

Definition

Let X be a non-empty topological space. Then its *regular open algebra*, ro(X), is the set of all $U \subseteq X$ that are both open and *regular* (U = int(cl(U))). The $\leq, \land, 0, 1$ are $\subseteq, \cap, \emptyset, X$, respectively. $U \lor V = int(cl(U \cup V))$ and $\neg U = int(X \backslash U)$.

 $\mathsf{ro}(X) \text{ is always complete. } \mathsf{int}(\mathsf{cl}(U)) = \{x : \forall y, y \leqslant x \; \exists z, z \leqslant y \; z \in U\}$

Example

• For
$$U = \{p : p(1) = 0\}$$
:
 $cl(U) = \{p : p(1) = 0 \lor 1 \notin dom(p)\}$.
 $int(cl(U)) = U$.
So $U \in ro(\mathbb{P})$.

• For
$$U = \{p : 1 \in ran(p)\}$$
:

Definition

Let X be a non-empty topological space. Then its *regular open algebra*, ro(X), is the set of all $U \subseteq X$ that are both open and *regular* (U = int(cl(U))). The $\leq, \land, 0, 1$ are $\subseteq, \cap, \emptyset, X$, respectively. $U \lor V = int(cl(U \cup V))$ and $\neg U = int(X \backslash U)$.

 $\mathsf{ro}(X) \text{ is always complete. } \mathsf{int}(\mathsf{cl}(U)) = \{x : \forall y, y \leqslant x \; \exists z, z \leqslant y \; z \in U\}$

Example

• For
$$U = \{p : p(1) = 0\}$$
:
 $cl(U) = \{p : p(1) = 0 \lor 1 \notin dom(p)\}$.
 $int(cl(U)) = U$.
So $U \in ro(\mathbb{P})$.

• For
$$U = \{p : 1 \in \operatorname{ran}(p)\}$$
:
 $\operatorname{cl}(U) = \mathbb{P}$.

Definition

Let X be a non-empty topological space. Then its *regular open algebra*, ro(X), is the set of all $U \subseteq X$ that are both open and *regular* (U = int(cl(U))). The $\leq, \land, 0, 1$ are $\subseteq, \cap, \emptyset, X$, respectively. $U \lor V = int(cl(U \cup V))$ and $\neg U = int(X \backslash U)$.

 $\mathsf{ro}(X) \text{ is always complete. } \mathsf{int}(\mathsf{cl}(U)) = \{x : \forall y, y \leqslant x \; \exists z, z \leqslant y \; z \in U\}$

Example

• For
$$U = \{p : p(1) = 0\}$$
:
 $cl(U) = \{p : p(1) = 0 \lor 1 \notin dom(p)\}$.
 $int(cl(U)) = U$.
So $U \in ro(\mathbb{P})$.

• For
$$U = \{p : 1 \in ran(p)\}$$
:
 $cl(U) = \mathbb{P}$.
 $int(cl(U)) = \mathbb{P}$.

Definition

Let X be a non-empty topological space. Then its *regular open algebra*, ro(X), is the set of all $U \subseteq X$ that are both open and *regular* (U = int(cl(U))). The $\leq, \land, 0, 1$ are $\subseteq, \cap, \emptyset, X$, respectively. $U \lor V = int(cl(U \cup V))$ and $\neg U = int(X \backslash U)$.

ro(X) is always complete. $int(cl(U)) = \{x : \forall y, y \leq x \exists z, z \leq y \ z \in U\}$

Example

• For
$$U = \{p : p(1) = 0\}$$
:
 $cl(U) = \{p : p(1) = 0 \lor 1 \notin dom(p)\}$.
 $int(cl(U)) = U$.
So $U \in ro(\mathbb{P})$.

```
• For U = \{p : 1 \in ran(p)\}:

cl(U) = \mathbb{P}.

int(cl(U)) = \mathbb{P}.

So U \notin ro(\mathbb{P}).
```

For every forcing poset \mathbb{P} , there is a complete BA \mathbb{B} and a dense embedding $i: \mathbb{P} \to \mathbb{B} \setminus \{0\}.$

For every forcing poset \mathbb{P} , there is a complete BA \mathbb{B} and a dense embedding $i: \mathbb{P} \to \mathbb{B} \setminus \{0\}.$

Give \mathbb{P} the poset topology $\mathcal{T}_{\mathbb{P}}$. Let $\mathbb{B} = ro(\mathbb{P}, \mathcal{T}_{\mathbb{P}})$, and let $i(p) = int(cl(p \downarrow))$.

For every forcing poset \mathbb{P} , there is a complete BA \mathbb{B} and a dense embedding $i: \mathbb{P} \to \mathbb{B} \setminus \{0\}.$

Give \mathbb{P} the poset topology $\mathcal{T}_{\mathbb{P}}$. Let $\mathbb{B} = \mathsf{ro}(\mathbb{P}, \mathcal{T}_{\mathbb{P}})$, and let $i(p) = \mathsf{int}(\mathsf{cl}(p \downarrow))$.

Check conditions for i being a dense embedding:

For every forcing poset \mathbb{P} , there is a complete BA \mathbb{B} and a dense embedding $i: \mathbb{P} \to \mathbb{B} \setminus \{0\}.$

Give \mathbb{P} the poset topology $\mathcal{T}_{\mathbb{P}}$. Let $\mathbb{B} = \operatorname{ro}(\mathbb{P}, \mathcal{T}_{\mathbb{P}})$, and let $i(p) = \operatorname{int}(\operatorname{cl}(p \downarrow))$.

Check conditions for i being a dense embedding:

1. $i(\mathbb{1}_{\mathbb{Q}}) = \mathbb{1}_{\mathbb{P}}$.

For every forcing poset \mathbb{P} , there is a complete BA \mathbb{B} and a dense embedding $i: \mathbb{P} \to \mathbb{B} \setminus \{0\}.$

Give \mathbb{P} the poset topology $\mathcal{T}_{\mathbb{P}}$. Let $\mathbb{B} = \operatorname{ro}(\mathbb{P}, \mathcal{T}_{\mathbb{P}})$, and let $i(p) = \operatorname{int}(\operatorname{cl}(p \downarrow))$.

Check conditions for i being a dense embedding:

1. $i(\mathbb{1}_{\mathbb{Q}}) = \mathbb{1}_{\mathbb{P}}$. Clear, since $\mathbb{1}_{\mathbb{B}} = \mathbb{P}$.

For every forcing poset \mathbb{P} , there is a complete BA \mathbb{B} and a dense embedding $i: \mathbb{P} \to \mathbb{B} \setminus \{0\}.$

Give \mathbb{P} the poset topology $\mathcal{T}_{\mathbb{P}}$. Let $\mathbb{B} = \operatorname{ro}(\mathbb{P}, \mathcal{T}_{\mathbb{P}})$, and let $i(p) = \operatorname{int}(\operatorname{cl}(p \downarrow))$. Check conditions for i being a dense embedding:

1. $i(\mathbb{1}_{\mathbb{Q}}) = \mathbb{1}_{\mathbb{P}}$. Clear, since $\mathbb{1}_{\mathbb{B}} = \mathbb{P}$.

2. $\forall q_1, q_2 \in \mathbb{Q} \ [q_1 \leq_{\mathbb{Q}} q_2 \rightarrow i(q_1) \leq_{\mathbb{P}} i(q_2)].$

For every forcing poset \mathbb{P} , there is a complete BA \mathbb{B} and a dense embedding $i: \mathbb{P} \to \mathbb{B} \setminus \{0\}.$

Give \mathbb{P} the poset topology $\mathcal{T}_{\mathbb{P}}$. Let $\mathbb{B} = \operatorname{ro}(\mathbb{P}, \mathcal{T}_{\mathbb{P}})$, and let $i(p) = \operatorname{int}(\operatorname{cl}(p \downarrow))$. Check conditions for i being a dense embedding:

1. $i(\mathbb{1}_{\mathbb{Q}}) = \mathbb{1}_{\mathbb{P}}$. Clear, since $\mathbb{1}_{\mathbb{B}} = \mathbb{P}$.

2. $\forall q_1, q_2 \in \mathbb{Q} \ [q_1 \leq_{\mathbb{Q}} q_2 \rightarrow i(q_1) \leq_{\mathbb{P}} i(q_2)].$ Clear, since $\leq_{\mathbb{B}}$ is \subseteq .

For every forcing poset \mathbb{P} , there is a complete BA \mathbb{B} and a dense embedding $i: \mathbb{P} \to \mathbb{B} \setminus \{0\}.$

Give \mathbb{P} the poset topology $\mathcal{T}_{\mathbb{P}}$. Let $\mathbb{B} = \operatorname{ro}(\mathbb{P}, \mathcal{T}_{\mathbb{P}})$, and let $i(p) = \operatorname{int}(\operatorname{cl}(p \downarrow))$. Check conditions for i being a dense embedding:

1. $i(\mathbb{1}_{\mathbb{Q}}) = \mathbb{1}_{\mathbb{P}}$. Clear, since $\mathbb{1}_{\mathbb{B}} = \mathbb{P}$.

- 2. $\forall q_1, q_2 \in \mathbb{Q} \ [q_1 \leq_{\mathbb{Q}} q_2 \rightarrow i(q_1) \leq_{\mathbb{P}} i(q_2)].$ Clear, since $\leq_{\mathbb{B}}$ is \subseteq .
- 3. $\forall q_1, q_2 \in \mathbb{Q} \ [q_1 \perp_{\mathbb{Q}} q_2 \leftrightarrow i(q_1) \perp_{\mathbb{P}} i(q_2)].$

For every forcing poset \mathbb{P} , there is a complete BA \mathbb{B} and a dense embedding $i: \mathbb{P} \to \mathbb{B} \setminus \{0\}.$

Give \mathbb{P} the poset topology $\mathcal{T}_{\mathbb{P}}$. Let $\mathbb{B} = \operatorname{ro}(\mathbb{P}, \mathcal{T}_{\mathbb{P}})$, and let $i(p) = \operatorname{int}(\operatorname{cl}(p \downarrow))$.

Check conditions for i being a dense embedding:

1. $i(\mathbb{1}_{\mathbb{Q}}) = \mathbb{1}_{\mathbb{P}}$. Clear, since $\mathbb{1}_{\mathbb{B}} = \mathbb{P}$.

- 2. $\forall q_1, q_2 \in \mathbb{Q} \ [q_1 \leq_{\mathbb{Q}} q_2 \rightarrow i(q_1) \leq_{\mathbb{P}} i(q_2)].$ Clear, since $\leq_{\mathbb{B}}$ is \subseteq .
- 3. $\forall q_1, q_2 \in \mathbb{Q} \ [q_1 \perp_{\mathbb{Q}} q_2 \leftrightarrow i(q_1) \perp_{\mathbb{P}} i(q_2)].$
- 4. $i(\mathbb{Q})$ is a dense subset of \mathbb{P} .

Lemma

The statement:

'Whenever \mathcal{D} is a family of maximal antichains in \mathbb{P} with $|\mathcal{D}| \leq \kappa$, there exists a linked family [filter] A in \mathbb{P} such that $D \cap A \neq \emptyset$ for all $D \in \mathcal{D}'$ is equivalent to $MA_{\mathbb{P}}(\kappa)$.

 $(A \subseteq \mathbb{P} \text{ is a linked family if } p \not\perp q \text{ for all } p, q \in A.)$

Lemma

The statement:

'Whenever \mathcal{D} is a family of maximal antichains in \mathbb{P} with $|\mathcal{D}| \leq \kappa$, there exists a linked family [filter] A in \mathbb{P} such that $D \cap A \neq \emptyset$ for all $D \in \mathcal{D}'$ is equivalent to $MA_{\mathbb{P}}(\kappa)$.

 $(A \subseteq \mathbb{P} \text{ is a linked family if } p \not\perp q \text{ for all } p, q \in A.)$

Lemma

If $i : \mathbb{P} \to \mathbb{Q}$ is a dense embedding, then for all maximal antichains $A \subseteq \mathbb{P}$, i(A) is a maximal antichain in \mathbb{Q} .

For any infinite cardinal κ , the following are equivalent:

1. $MA(\kappa)$.

2. $MA_{\mathbb{B}}(\kappa)$ holds for all complete ccc Boolean algebras \mathbb{B} .

For any infinite cardinal κ , the following are equivalent:

1. $MA(\kappa)$.

2. $MA_{\mathbb{B}}(\kappa)$ holds for all complete ccc Boolean algebras \mathbb{B} .

Lemma (1)

For every forcing poset \mathbb{P} , there is a complete BA \mathbb{B} and a dense embedding $i: \mathbb{P} \to \mathbb{B} \setminus \{0\}.$

Lemma (2)

Let $i : \mathbb{Q} \to \mathbb{P}$ be a dense embedding. Then $MA_{\mathbb{P}}(\kappa)$ implies $MA_{\mathbb{Q}}(\kappa)$.

Fix a ccc poset \mathbb{P} . We must prove $MA_{\mathbb{P}}(\kappa)$.

For any infinite cardinal κ , the following are equivalent:

1. $MA(\kappa)$.

2. $MA_{\mathbb{B}}(\kappa)$ holds for all complete ccc Boolean algebras \mathbb{B} .

Lemma (1)

For every forcing poset \mathbb{P} , there is a complete BA \mathbb{B} and a dense embedding $i: \mathbb{P} \to \mathbb{B} \setminus \{0\}.$

Lemma (2)

Let $i : \mathbb{Q} \to \mathbb{P}$ be a dense embedding. Then $MA_{\mathbb{P}}(\kappa)$ implies $MA_{\mathbb{Q}}(\kappa)$.

Fix a ccc poset \mathbb{P} . We must prove $MA_{\mathbb{P}}(\kappa)$.

Fix $i : \mathbb{P} \to \mathbb{B} \setminus \{0\}$ as in Lemma 1.

For any infinite cardinal κ , the following are equivalent:

1. $MA(\kappa)$.

2. $MA_{\mathbb{B}}(\kappa)$ holds for all complete ccc Boolean algebras \mathbb{B} .

Lemma (1)

For every forcing poset \mathbb{P} , there is a complete BA \mathbb{B} and a dense embedding $i: \mathbb{P} \to \mathbb{B} \setminus \{0\}.$

Lemma (2)

Let $i : \mathbb{Q} \to \mathbb{P}$ be a dense embedding. Then $MA_{\mathbb{P}}(\kappa)$ implies $MA_{\mathbb{Q}}(\kappa)$.

Fix a ccc poset \mathbb{P} . We must prove $MA_{\mathbb{P}}(\kappa)$.

Fix $i : \mathbb{P} \to \mathbb{B} \setminus \{0\}$ as in Lemma 1. B has the ccc.

For any infinite cardinal κ , the following are equivalent:

1. $MA(\kappa)$.

2. $MA_{\mathbb{B}}(\kappa)$ holds for all complete ccc Boolean algebras \mathbb{B} .

Lemma (1)

For every forcing poset \mathbb{P} , there is a complete BA \mathbb{B} and a dense embedding $i: \mathbb{P} \to \mathbb{B} \setminus \{0\}.$

Lemma (2)

Let $i : \mathbb{Q} \to \mathbb{P}$ be a dense embedding. Then $MA_{\mathbb{P}}(\kappa)$ implies $MA_{\mathbb{Q}}(\kappa)$.

Fix a ccc poset \mathbb{P} . We must prove $MA_{\mathbb{P}}(\kappa)$.

Fix $i : \mathbb{P} \to \mathbb{B} \setminus \{0\}$ as in Lemma 1. **B** has the ccc.

 $MA_{\mathbb{P}}(\kappa)$ follows from $MA_{\mathbb{B}}(\kappa)$ by Lemma 2.

Thank you! Questions?