Homework 10, due Tuesday 27 May

1. Prove Theorem 22 (p 21 of the syllabus) for the system of natural deduction.

The clause " $\Gamma \mid \perp$ iff $\Gamma \vdash_{\mathbf{IPC}} \perp$ " should be added to Definition 21. We noted in class that a corollary of the definition is that $\Gamma \mid \varphi$ implies $\Gamma \vdash_{\mathbf{IPC}} \varphi$. You can use this.

Also, you can use the following:

Lemma: If Γ and Σ are two **IPC**-equivalent theories (i.e. $\Gamma \vdash_{\mathbf{IPC}} \sigma$ for all $\sigma \in \Sigma$ and $\Sigma \vdash_{\mathbf{IPC}} \gamma$ for all $\gamma \in \Gamma$), then for all χ : $\Gamma \mid \chi$ iff $\Sigma \mid \chi$.

Hint: you should not use induction on the complexity of a single derivation $\Gamma \vdash \phi$, but rather induction on n, proving the following statement: "for all Σ and all ψ , if $\Sigma \mid \Sigma$ and $\Sigma \vdash_n \psi$ then $\Sigma \mid \psi$ ", where " $\Sigma \vdash_n \psi$ " means that the derivation-tree for $\Sigma \vdash \psi$ has depth n or less. So you need to assume that the statement "for all Σ and all $\psi \ldots$ " holds for all m < n and prove that "for all Σ and all $\psi \ldots$ " holds for n. [6 pts]

- (a) Show Corollory 23 (1) (completely, even if in class we did some of the steps). [2 pts]
 - (b) Show how Corollory 23 (2) follows from Corollory 23 (1). [2 pts]
 - (c) Show, using the Aczel slash, Exercise 2 (a) from Homework 5, namely that

If
$$\vdash_{\mathbf{IPC}} (\varphi \to \psi) \to (\chi \lor \theta)$$
, then
 $\vdash_{\mathbf{IPC}} (\varphi \to \psi) \to \chi \text{ or } \vdash_{\mathbf{IPC}} (\varphi \to \psi) \to \theta \text{ or } \vdash_{\mathbf{IPC}} (\varphi \to \psi) \to \varphi.$
[2 pts]

3.* Show that, if θ has *n* propositional variables, then $\theta \mid \theta$ iff in the *n*-universal model the following holds:

For all u, v, if $u \models \theta$ and $v \models \theta$

then there exists a w with wRu and wRv such that $w \models \theta$.

[6 pts]