Homework 4, due Monday 28 February.

 (a) Let φ contain only ∧, ∨ and → but no ¬ and no ⊥. Let 𝔅 be any Kripke-model (for the language of φ). Extend the model 𝔅 to 𝔅⁺ by adding one more node x at the top above all the nodes of 𝔅, and making all the propositional variables of φ true in x.

Show that, for all the nodes w in \mathfrak{M} we have:

$$\mathfrak{M}, w \models \varphi$$
 iff $\mathfrak{M}^+, w \models \varphi$

(satisfaction in the old and new model is the same for φ). [4 pts]

- (b) Let φ contain only \wedge, \vee and \rightarrow but no \neg and no \bot . Show that $\vdash_{\mathbf{IPC}} \varphi$ iff $\vdash_{\mathbf{KC}} \varphi$. (You may use the completeness of **KC** with respect to its finite frames.) [2 pts]
- 2. (a) Prove, using the canonical model method, strong completeness of **LC** with respect to the upwards linear frames. [2 pts]
 - (b) Prove, using the canonical model method, strong completeness of KC with respect to the upwards directed frames. [3 pts]
- 3. The *n*-canonical model is the canonical model for formulae in the *n* variables p_1, \ldots, p_n only. Prove that the *n*-canonical model of $\mathbf{KC_{prop}} := \mathbf{IPC} + \{\neg p \lor \neg \neg p\}$ for propositional variables *p* only, has a largest element above each world, and simultaneously that $\mathbf{KC_{prop}}$ is equal to \mathbf{KC} , in the following manner:
 - (a) Take a node Γ of the *n*-canonical model of **KC**_{prop}. Show that Γ contains either $\neg p_i$ or $\neg \neg p_i$ for each $i \leq n$. [1 pt]
 - (b) Assume without loss of generality that Γ contains $\neg p_1, \ldots, \neg p_k$ and $\neg \neg p_{k+1}, \ldots, \neg \neg p_n$. Show that then $\Gamma \cup \{\neg p_1, \ldots, \neg p_k, p_{k+1}, \ldots, p_n\}$ is consistent. [2 pts]
 - (c) Show that it follows that Γ has a successor containing $\{\neg p_1, \ldots, \neg p_k, p_{k+1}, \ldots, p_n\}$ and this successor is the unique largest element of the model above Γ . (You may use the fact that $\mathbf{CPC_{prop}} := \mathbf{IPC} + \{p \lor \neg p\}$ for propositional variables p only, is equal to \mathbf{CPC}). [2 pts]
 - (d) Conclude that any such Γ satisfies all of **KC** and therefore **KC**_{prop} is equal to **KC**. [2 pts]

Remark: If you feel like it, you can show that with a little additional work you can use the full canonical model instead of the *n*-canonical model, for some bonus points.