Classical results: Assume the Axiom of Determinacy (AD). Then all sets of reals are Lebesgue Measurable, have the Baire property and the Perfect Set Property.
Classical results: Assume the **Axiom of Determinacy** (AD). Then all sets of reals are **Lebesgue Measurable**, have the **Baire property** and the **Perfect Set Property**.

Example: AD \rightarrow Baire property.

Proof:
- Define the Banach-Mazur game, G^{**}.
- Show: I wins $G^{**}(A) \iff A$ is comeager in an open set, II wins $G^{**}(A) \iff A$ is meager.
- If all sets satisfy that disjunction, then all sets have the **Baire property**.
Determinacy without AD

AD contradicts AC. Suppose, instead, that we have ZFC: what is determinacy?

\[\mathcal{D} := \{ A \mid G(A) \text{ is determined} \} \]
AD contradicts AC. Suppose, instead, that we have ZFC: what is determinacy?

$$D := \{ A \mid G(A) \text{ is determined} \}$$

Is determinacy a “mother regularity property”, i.e., does it imply all the other regularity properties?

Answer: it does classwise but not necessarily pointwise.
Let Γ be a boldface pointclass (closed under continuous pre-images, and in some cases under intersections with basic open sets).

If all sets in Γ are determined then all sets in Γ are regular.
Let \(\Gamma \) be a boldface pointclass (closed under continuous pre-images, and in some cases under intersections with basic open sets).

If all sets in \(\Gamma \) are determined then all sets in \(\Gamma \) are regular.

Definition: Let \(\text{Reg} \) be some regularity property. Then we say:

- “Determinacy implies \(\text{Reg} \) classwise” \(\iff \) for all boldface pointclasses \(\Gamma \) (\(\Gamma \subseteq D \rightarrow \Gamma \subseteq \text{Reg} \)).
- “Determinacy implies \(\text{Reg} \) pointwise” \(\iff \) \(D \subseteq \text{Reg} \).
Example: Let Γ be a boldface pointclass. If $\Gamma \subseteq D$ then $\Gamma \subseteq \text{BP}$.

Proof:

- Define the Banach-Mazur game, G^{**}.
- Encode $A \mapsto A'$ so that $G^{**}(A) \equiv G(A')$.

Then: I wins $G(A') \iff A$ is comeager in an open set II wins $G(A') \iff A$ is meager.

If $A \in \Gamma$ then $A' \in \Gamma$ so $G(A')$ is determined. Then A is either comeager in an open set or meager.

If all sets in Γ have this property, then all sets in Γ have the Baire property. \qed
Pointwise “mother regularity property” = e.g. homogeneously Suslin sets, and not determinacy.

Pointwise "mother regularity property" = e.g. homogeneously Suslin sets, and **not** determinacy.

Sets can be **determined** but not **regular** (AC).

My MSc thesis: continue this investigation.
Arboreal Forcings

Definition:

A forcing partial order \((\mathbb{P}, \leq)\) is called **arboreal** if it is isomorphic to a collection \(\mathcal{T}\) of perfect **trees** on \(\omega\) or \(2\) ordered by inclusion, with the extra condition that

\[
\forall T \in \mathcal{T} \ \forall t \in T \ \exists S \in \mathcal{T} \ (S \subseteq T \ \wedge \ t \subseteq \text{stem}(S))
\]

An arboreal \((\mathbb{P}, \leq)\) is called **topological** if \(\{[P] \mid P \in \mathbb{P}\}\) is a topology base on \(\omega^\omega\) or \(2^\omega\). Otherwise, it is called **non-topological**.
Examples

Some examples: (non-topological)

- Sacks forcing S: all perfect trees.

- Miller forcing M: all super-perfect trees.

- Laver forcing L: all trees with finite stem and afterwards ω-splitting.
Examples (2)

Some examples: (topological)

- Cohen forcing \mathbb{C}: basic open sets $[s]$.

- Hechler forcing \mathbb{D}: for $s \in \omega^{<\omega}$ and $f \in \omega^\omega$ with $s \subseteq f$, define $[s, f] := \{x \in \omega^\omega \mid s \subseteq x \land \forall n \geq |s| (x(n) \geq f(n))\}$.
Regularity Properties

Definition: Given \((\mathbb{P}, \leq)\), we define the **Marczewski-Burstin** algebra of \(\mathbb{P}\):

\[A \in \text{MB}(\mathbb{P}) \iff \forall P \in \mathbb{P} \exists Q \leq P ([Q] \subseteq A \lor [Q] \cap A = \emptyset) \]
Definition: Given \((\mathbb{P}, \leq)\), we define

- the **Marczewski-Burstin** algebra of \(\mathbb{P}\):

 \[A \in \text{MB}(\mathbb{P}) \iff \forall P \in \mathbb{P} \exists Q \leq P ([Q] \subseteq A \lor [Q] \cap A = \emptyset) \]

- the **weak Marczewski-Burstin** algebra of \(\mathbb{P}\):

 \[A \in \text{wMB}(\mathbb{P}) \iff \exists Q \in \mathbb{P} ([Q] \subseteq A \lor [Q] \cap A = \emptyset) \]
Definition: Given \((\mathcal{P}, \leq)\), we define

- the **Marczewski-Burstin** algebra of \(\mathcal{P}\):
 \[
 A \in \text{MB}(\mathcal{P}) : \iff \forall P \in \mathcal{P} \exists Q \leq P \ ([Q] \subseteq A \lor [Q] \cap A = \emptyset)
 \]

- the **weak Marczewski-Burstin** algebra of \(\mathcal{P}\):
 \[
 A \in \text{wMB}(\mathcal{P}) : \iff \exists Q \in \mathcal{P} \ ([Q] \subseteq A \lor [Q] \cap A = \emptyset)
 \]

- If \(\mathcal{P}\) is **topological**, then we define
 \[
 \text{BP}(\mathcal{P}) := \{ A \mid A \text{ has the Baire property in } (\omega^\omega, \mathcal{P}) \}
 \]
Pointwise View of Determinacy

In “The pointwise view of determinacy”, the following results were proved: For non-topological \mathbb{P}:

1. $\mathbb{D} \not\rightarrow \text{MB}(\mathbb{P})$ pointwise (i.e., $\mathbb{D} \not\subset \text{MB}(\mathbb{P})$).

2. \mathbb{P} classified into three cases:
 - Case 1: $\mathbb{D} \rightarrow \text{wMB}(\mathbb{P})$ pointwise.
 - Case 2: $\mathbb{D} \not\rightarrow \text{wMB}(\mathbb{P})$ pointwise.
 - Case 3: There are examples either way.
In “The pointwise view of determinacy”, the following results were proved: For non-topological \(\mathbb{P} \):

1. \(\mathcal{D} \not\rightarrow \text{MB}(\mathbb{P}) \) pointwise (i.e., \(\mathcal{D} \not\subseteq \text{MB}(\mathbb{P}) \)).

2. \(\mathbb{P} \) classified into three cases:
 - Case 1: \(\mathcal{D} \rightarrow \text{wMB}(\mathbb{P}) \) pointwise.
 - Case 2: \(\mathcal{D} \not\rightarrow \text{wMB}(\mathbb{P}) \) pointwise.
 - Case 3: There are examples either way.

Question: Can the same analysis be done for topological \(\mathbb{P} \) and \(\text{BP}(\mathbb{P}) \)? What about \(\text{wBP}(\mathbb{P}) \)?
Theorem: If \mathcal{P} is non-atomic then $D \not	o BP(\mathcal{P})$ pointwise.
Theorem: If \mathbb{P} is non-atomic then $D \not\rightarrow \text{BP}(\mathbb{P})$ pointwise.

Proof:

If $A \in \text{BP}(\mathbb{P})$ then for every open O there is a perfect tree T in O such that $[T] \subseteq A$ or $[T] \cap A = \emptyset$.
Baire Property

Theorem: If \mathbb{P} is non-atomic then $D \not\to \text{BP}(\mathbb{P})$ pointwise.

Proof:

1. If $A \in \text{BP}(\mathbb{P})$ then for every open O there is a perfect tree T in O such that $[T] \subseteq A$ or $[T] \cap A = \emptyset$.

2. Find a $P \in \mathbb{P}$ and a strategy σ such that $[P] \cap [\sigma] = \emptyset$.

Baire Property

Theorem: If \mathbb{P} is non-atomic then $D \not
ightarrow \text{BP}(\mathbb{P})$ pointwise.

Proof:

- If $A \in \text{BP}(\mathbb{P})$ then for every open O there is a perfect tree T in O such that $[T] \subseteq A$ or $[T] \cap A = \emptyset$.
- Find a $P \in \mathbb{P}$ and a strategy σ such that $[P] \cap [\sigma] = \emptyset$.
- Let $\langle T_\alpha \mid \alpha < 2^{\aleph_0} \rangle$ enumerate all perfect trees in $[P]$.

![Diagram](image-url)
Baire Property

Theorem: If \(\mathcal{P} \) is non-atomic then \(\text{D} \not\rightarrow \text{BP}(\mathcal{P}) \) pointwise.

Proof:

- If \(A \in \text{BP}(\mathcal{P}) \) then for every open \(O \) there is a perfect tree \(T \) in \(O \) such that \([T] \subseteq A \) or \([T] \cap A = \emptyset\).
- Find a \(P \in \mathcal{P} \) and a strategy \(\sigma \) such that \([P] \cap [\sigma] = \emptyset\).
- Let \(\langle T_\alpha \mid \alpha < 2^{\aleph_0} \rangle \) enumerate all perfect trees in \([P]\).
- Since also \(|T_\alpha| = 2^{\aleph_0} \), we find two Bernstein components \(A \) and \(B \) with \(A \cap B = \emptyset \) and

\[
\forall \alpha < 2^{\aleph_0} \ (A \cap [T_\alpha] \neq \emptyset \land B \cap [T_\alpha] \neq \emptyset)
\]
Baire Property

Theorem: If \mathbb{P} is **non-atomic** then $D \not	o \text{BP}(\mathbb{P})$ pointwise.

Proof:

- If $A \in \text{BP}(\mathbb{P})$ then for every open O there is a perfect tree T in O such that $[T] \subseteq A$ or $[T] \cap A = \emptyset$.

- Find a $P \in \mathbb{P}$ and a strategy σ such that $[P] \cap [\sigma] = \emptyset$.

- Let $\langle T_\alpha \mid \alpha < 2^{\aleph_0} \rangle$ enumerate all perfect trees in $[P]$.

- Since also $|T_\alpha| = 2^{\aleph_0}$, we find two Bernstein components A and B with $A \cap B = \emptyset$ and

\[
\forall \alpha < 2^{\aleph_0} \ (A \cap [T_\alpha] \neq \emptyset \land B \cap [T_\alpha] \neq \emptyset)
\]

- Let $A' := A \cup [\sigma]$. Then for **no** perfect tree T in $[P]$ do we have $[T] \subseteq A'$ or $[T] \cap A' = \emptyset$, so neither A' nor its complement is in $\text{BP}(\mathbb{P})$. But either A' or its complement is determined. \Box
Weak Baire property

How to define $wBP(P)$?
Weak Baire property

How to define \(wBP(\mathbb{P}) \)?

Use the following fact: \(A \) has the Baire property iff

\[
\forall O \ \exists U \subseteq O \ (U \cap A \text{ is meager } \lor \ U \setminus A \text{ is meager})
\]
Weak Baire property

How to define \(wBP(\mathcal{P}) \)?

Use the following fact: \(A \) has the Baire property iff

\[
\forall O \, \exists U \subseteq O \ (U \cap A \text{ is meager} \lor U \setminus A \text{ is meager})
\]

Definition: \(A \) has the weak Baire property iff

\[
\exists U \ (U \cap A \text{ is meager} \lor U \setminus A \text{ is meager})
\]
Three Cases

Consider the topological space (ω^ω, P) or $(2^\omega, P)$.

Case 1: For every σ:
\[\exists P \in P \text{ s.t. } [P] \setminus [\sigma] \text{ is meager} \]

Case 2: For some σ:
\[\forall P \in P \exists Q \leq P \text{ s.t. } [Q] \cap [\sigma] \text{ is meager} \]

Case 3: None of the above.
Consider the topological space $(\omega^\omega, \mathcal{P})$ or $(2^\omega, \mathcal{P})$.

Case 1: For every σ:

$$\exists P \in \mathcal{P} \text{ s.t. } [P] \setminus [\sigma] \text{ is meager}$$

Case 2: For some σ:

$$\forall P \in \mathcal{P} \exists Q \leq P \text{ s.t. } [Q] \cap [\sigma] \text{ is meager}$$

Case 3: None of the above.

Case 1: $D \rightarrow \text{wBP}(\mathcal{P})$ pointwise.

Case 2: $D \nrightarrow \text{wBP}(\mathcal{P})$ pointwise.

Case 3: ?
Three Cases

Consider the topological space \((\omega^\omega, P)\) or \((2^{\omega}, P)\).

Case 1: For every \(\sigma\):
\[\exists P \in P \text{ s.t. } [P] \setminus [\sigma] \text{ is meager}\]

Case 2: For some \(\sigma\):
\[\forall P \in P \exists Q \leq P \text{ s.t. } [Q] \cap [\sigma] \text{ is meager}\]

Case 3: None of the above.

Case 1: \(D \rightarrow w\text{BP}(P)\) pointwise.

Case 2: \(D \not\rightarrow w\text{BP}(P)\) pointwise.

Case 3: ?

All standard \(P\) belong to this category.

Regularity Properties and Determinacy – p.14/27
Asymmetric Properties

Perfect Set Property: A is countable or contains a perfect tree. This is an asymmetric property, saying that “A is big or small”.

PSP = “Asym(S)” (Sacks forcing).

Analogous asymmetric properties have been defined for other (\mathbb{P}, \leq).
Asymmetric Properties

Perfect Set Property: \(A \) is countable or contains a perfect tree. This is an asymmetric property, saying that “\(A \) is big or small”.

\[
PSP = "\text{Asym}(S)" \text{ (Sacks forcing)}.\]

Analogous asymmetric properties have been defined for other \((\mathbb{P}, \leq)\).

Question:

1. Is there a general definition for \(\text{Asym}(\mathbb{P}) \)?
2. What about \(D \rightarrow \text{Asym}(\mathbb{P}) \) pointwise?
Notions of Smallness

Definition:

- For two reals x, y, define
 \[x \leq^{*} y :\iff \forall n \in \mathbb{N} (x(n) \leq y(n)) \]

- $A \subseteq \omega^\omega$ is **σ-bounded** iff $\exists f \forall x \in A (x \leq^{*} f)$.

- $A \subseteq \omega^\omega$ is **dominating** iff $\forall f \exists x \in A (f \leq^{*} x)$.

- $A \subseteq \omega^\omega$ is **strongly dominating** iff
 \[\forall f \exists x \in A \forall n (x(n+1) > f(x(n))) \]
Notions of Largeness

Definition:

- **Perfect tree:** every node has an extension which is a splitting node.

- **Super-perfect tree:** every splitting node is ω-splitting and every node has an extension which is an ω-splitting node.

- **Spinas tree:** super-perfect tree such that for every $t \in T$:
 \[\forall s_1, s_2 \ (t \sim s_1 \text{ and } t \sim s_2 \text{ are } \omega\text{-splitting nodes of } T \rightarrow |s_1| = |s_2|) \]
 i.e., the next splitting node is a fixed distance away from t.

- **Laver tree:** the stem is finite, and after the stem, every node is ω-splitting.
Asymmetric properties

<table>
<thead>
<tr>
<th>Forcing</th>
<th>Largness</th>
<th>Smallness</th>
<th>Reg</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>contains perfect tree</td>
<td>countable</td>
<td>PSP</td>
</tr>
<tr>
<td>M</td>
<td>contains super-perfect tree</td>
<td>σ-bounded</td>
<td>K_{σ}-regularity</td>
</tr>
<tr>
<td>L^*</td>
<td>contains Spinas tree</td>
<td>not dominating</td>
<td>u-regularity</td>
</tr>
<tr>
<td>L</td>
<td>contains Laver tree</td>
<td>not strongly dominating</td>
<td>Laver-regularity</td>
</tr>
</tbody>
</table>

What do all these properties have in common?
Asymmetric games

Definition:

1. Asymmetric Game $G^\bullet(A)$:

 $I: \quad s_0 \quad s_1 \quad \ldots$

 $II: \quad n_1 \quad n_2 \quad \ldots$

 $s_i \in \omega^\omega \setminus \{\emptyset\}, \quad n_i \in \omega$

 I wins iff

 \begin{itemize}
 \item $\forall i \geq 1: s_i(0) \neq n_i$
 \item $x := s_0 \prec s_1 \prec s_2 \prec \cdots \in A$.
 \end{itemize}
Asymmetric games

Definition:

1. Asymmetric Game $G^*(A)$:

\[
I : \quad s_0 \quad s_1 \quad \ldots \\
II : \quad n_1 \quad n_2 \quad \ldots
\]

I wins iff

\[\forall i \geq 1 : s_i(0) \neq n_i\]
\[x := s_0 \triangledown s_1 \triangledown s_2 \triangledown \cdots \in A.\]

$s_i \in \omega^\omega \setminus \{\emptyset\}, \quad n_i \in \omega$

2. Kechris Game $\check{G}(A)$:

\[
I : \quad s_0 \quad s_1 \quad \ldots \\
II : \quad n_1 \quad n_2 \quad \ldots
\]

I wins iff

\[\forall i \geq 1 : s_i(0) \geq n_i\]
\[x := s_0 \triangledown s_1 \triangledown s_2 \triangledown \cdots \in A.\]

$s_i \in \omega^\omega \setminus \{\emptyset\}, \quad n_i \in \omega$
Asymmetric games

Definition:

3. **Spinas Game** \(G_u(A) \):

\[
\begin{array}{ccc}
I : & (s_0, k_0) & (s_1, k_1) & \ldots \\
II : & n_1 & n_2 \\
\end{array}
\]

\(s_i \in \omega^\omega \setminus \{\emptyset\}, \ k_i \in \omega \setminus \{0\}, \ n_i \in \omega \)

\(I \) wins iff

- \(\forall i \geq 1 : |s_i| = k_i - 1 \)
- \(\forall i \geq 1 : s_i(0) \geq n_i \)
- \(x := s_0 \cdot s_1 \cdot s_2 \cdot \ldots \in A. \)
Asymmetric games

Definition:

3. **Spinasis Game** $G_u(A)$:

I:

\[
(s_0, k_0) \quad (s_1, k_1) \quad \ldots
\]

II:

\[
n_1 \quad n_2
\]

$s_i \in \omega^\omega \setminus \{\emptyset\}$, $k_i \in \omega \setminus \{0\}$, $n_i \in \omega$

I wins iff

- $\forall i \geq 1: |s_i| = k_i - 1$
- $\forall i \geq 1: s_i(0) \geq n_i$
- $x := s_0 \bar{s}_1 \bar{s}_2 \bar{s}_3 \cdots \in A.$

4. **Goldstern Game** $D(A)$:

I:

\[
s_0 \quad k_1 \quad k_2
\]

II:

\[
n_1 \quad n_2 \quad \ldots
\]

$s_i \in \omega^\omega \setminus \{\emptyset\}$, $k_i \in \omega$, $n_i \in \omega$

I wins iff

- $\forall i \geq 1: k_i > n_i$
- $x := s_0 \bar{\langle} k_1, k_2, \ldots \bar{\rangle} \in A.$
Theorem: (Davis 1964; Kechris 1977; Spinas 1993; Goldstern et al 1995)

1. (a) \(I \) wins \(G^\bullet(A) \iff A \) contains a perfect tree.
 (b) \(II \) wins \(G^\bullet(A) \iff A \) is countable.

2. (a) \(I \) wins \(\tilde{G}(A) \iff A \) contains a super-perfect tree.
 (b) \(II \) wins \(\tilde{G}(A) \iff A \) is \(\sigma \)-bounded.

3. (a) \(I \) wins \(G_u(A) \iff A \) contains a Spinas tree.
 (b) \(II \) wins \(G_u(A) \iff A \) is not dominating.

4. (a) \(I \) wins \(D(A) \iff A \) contains a Laver tree.
 (b) \(II \) wins \(D(A) \iff A \) is not strongly dominating.
Generalyzed Asymmetric Games

Definition: Start with set of parameters $\Phi := (R, r^0, \{\Theta_n\}_{n \in \omega}, f)$ where

- $R \subseteq \mathcal{P}(\omega^\omega)$ is a countable set of requirements.
- $r^0 \subseteq \omega^\omega$ is the initial requirement.
- The Θ_i are countable sets of additional information.
- $f : \bigcup_n \Theta_n \rightarrow \mathcal{P}(R)$.

Then the game $G_\Phi(A)$ is defined as follows:

I wins $G_\Phi(A)$ iff

- $s_0 \in r^0$
- $\forall i \geq 1 : s_i \in r_i$
- $x := s_0 \leftarrow s_1 \leftarrow s_2 \leftarrow \cdots \in A$.

where $s_i \in \omega^\omega \setminus \{\emptyset\}, \theta_i \in \Theta_i, r_i \in R \cap f(\theta_{i-1})$
Definition: Let (\mathbb{P}, \leq) be a forcing notion, and let G_Φ be a generalized asymmetric game. We say that G_Φ represents \mathbb{P} iff

$$\forall A \ [I \text{ has a winning strategy in } G_\Phi(A) \iff \exists P \in \mathbb{P} ([P] \subseteq A)]$$
Definition: Let (\mathbb{P}, \leq) be a forcing notion, and let G_{Φ} be a generalized asymmetric game. We say that G_{Φ} represents \mathbb{P} iff

$$\forall A \ [I \text{ has a winning strategy in } G_{\Phi}(A) \iff \exists P \in \mathbb{P} ([P] \subseteq A)]$$

Definition: Suppose G_{Φ} represents \mathbb{P}. Then we define $\text{Asym}_{\Phi}(\mathbb{P})$ by

$$A \in \text{Asym}_{\Phi}(\mathbb{P}) : \iff \exists P \in \mathbb{P} ([P] \subseteq A) \lor \text{II wins } G_{\Phi}(A)$$
Asymmetric Game Characterizations

Definition: Let \((\mathbb{P}, \leq)\) be a forcing notion, and let \(G_\Phi\) be a generalized asymmetric game. We say that \(G_\Phi\) **represents** \(\mathbb{P}\) iff

\[
\forall A \ [I \text{ has a winning strategy in } G_\Phi(A) \iff \exists P \in \mathbb{P} ([P] \subseteq A)]
\]

Definition: Suppose \(G_\Phi\) represents \(\mathbb{P}\). Then we define \(\text{Asym}_\Phi(\mathbb{P})\) by

\[
A \in \text{Asym}_\Phi(\mathbb{P}) : \iff \exists P \in \mathbb{P} ([P] \subseteq A) \lor II \text{ wins } G_\Phi(A)
\]

Examples:

- Let \(\Phi_\bullet\) be the parameters corresponding to Davis’s asymmetric game \(G_\bullet(A)\). Then Sacks forcing is represented by \(G_{\Phi_\bullet}(A)\). Therefore we can write \(\text{PSP} = \text{Asym}_{\Phi_\bullet}(\mathbb{S})\).

- Let \(\Phi_\sim\) be the parameters corresponding to the Kechris game \(\tilde{G}(A)\). Then Miller forcing is represented by \(G_{\Phi_\sim}(A)\). Therefore \(K_\sigma\)-regularity = \(\text{Asym}_{\Phi_\sim}(\mathbb{M})\).
Questions

Does every \mathbb{P} have an asymmetric game G_Φ which represents it?

If so, is the representation unique?
Questions

Does every \mathbb{P} have an asymmetric game G_{Φ} which represents it?

If so, is the representation unique?

For example, Silver forcing probably doesn’t have a game representation.

Silver forcing: uniform trees. Perfect trees T on 2^ω such that

$$\forall s, t \in T \ (|s| = |t| \rightarrow \{i \mid s \upharpoonright i \in T\} = \{i \mid t \upharpoonright i \in T\})$$
Pointwise Non-implication

Recall the question: “$D \rightarrow \text{Asym}(P)$ pointwise?”
Recall the question: “$D \rightarrow \text{Asym}(P)$ pointwise?”

Theorem: Suppose P is represented by G_Φ which is non-trivial in the sense that I may choose between s and t with $s \perp t$. Then $D \not\rightarrow \text{Asym}_\Phi(P)$ pointwise.
Pointwise Non-implication

Recall the question: “$D \rightarrow \text{Asym}(P)$ pointwise?”

Theorem: Suppose P is represented by G_Φ which is non-trivial in the sense that I may choose between s and t with $s \perp t$. Then $D \not\rightarrow \text{Asym}_\Phi(P)$ pointwise.

Proof:
Recall the question: “$D \rightarrow \text{Asym}(\mathbb{P})$ pointwise?”

Theorem: Suppose \mathbb{P} is represented by G_Φ which is non-trivial in the sense that I may choose between s and t with $s \perp t$. Then $D \not\rightarrow \text{Asym}_\Phi(\mathbb{P})$ pointwise.

Proof:

- Fix $s \in \omega^{<\omega}$ which “I may play in the first move”. Fix a σ with $s \notin \sigma$.

Regularity Properties and Determinacy – p.25/27
Recall the question: “$D \to \text{Asym}(P)$ pointwise?”

Theorem: Suppose P is represented by G_Φ which is non-trivial in the sense that I may choose between s and t with $s \perp t$. Then $D \nleftrightarrow \text{Asym}_\Phi(P)$ pointwise.

Proof:

- Fix $s \in \omega^{<\omega}$ which “I may play in the first move”. Fix a σ with $s \notin \sigma$.

- Let $\langle T_\alpha \mid \alpha < 2^{\aleph_0} \rangle$ enumerate perfect trees and $\langle \tau_\alpha \mid \alpha < 2^{\aleph_0} \rangle$ II-strategies. Let $K_\alpha := \{x \mid s \subset x \land x \text{ is a play according to } \tau_\alpha\}$
Pointwise Non-implication

Recall the question: “$D \rightarrow \text{Asym}(P)$ pointwise?”

Theorem: Suppose P is represented by G_Φ which is non-trivial in the sense that I may choose between s and t with $s \perp t$. Then $D \not\rightarrow \text{Asym}_\Phi(P)$ pointwise.

Proof:

- Fix $s \in \omega^{<\omega}$ which “I may play in the first move”. Fix a σ with $s \notin \sigma$.
- Let $\langle T_\alpha | \alpha < 2^{\aleph_0} \rangle$ enumerate perfect trees and $\langle \tau_\alpha | \alpha < 2^{\aleph_0} \rangle$ II-strategies. Let $K_\alpha := \{x | s \subseteq x \land x$ is a play according to $\tau_\alpha\}$
- By the non-triviality assumption, $|K_\alpha| = 2^{\aleph_0}$ for all α.
Recall the question: “$D \rightarrow \text{Asym}(P)$ pointwise?”

Theorem: Suppose P is represented by G_Φ which is non-trivial in the sense that I may choose between s and t with $s \perp t$. Then $D \not\rightarrow \text{Asym}_\Phi(P)$ pointwise.

Proof:

- Fix $s \in \omega^{<\omega}$ which “I may play in the first move”. Fix a σ with $s \notin \sigma$.
- Let $\langle T_\alpha \mid \alpha < 2^{\aleph_0} \rangle$ enumerate perfect trees and $\langle \tau_\alpha \mid \alpha < 2^{\aleph_0} \rangle$ II-strategies. Let $K_\alpha := \{x \mid s \subseteq x \land x \text{ is a play according to } \tau_\alpha\}$
- By the non-triviality assumption, $|K_\alpha| = 2^{\aleph_0}$ for all α.
- Inductively find Bernstein components A and B as follows: given A_α, B_α, choose

 - $a_{\alpha+1} \in K_\alpha \setminus (A_\alpha \cup B_\alpha)$
 - $b_{\alpha+1} \in \left[T_\alpha \right] \setminus (A_\alpha \cup B_\alpha \cup \{a_{\alpha+1}\})$

 and let $A_{\alpha+1} := A_\alpha \cup \{a_{\alpha+1}\}$ and $B_{\alpha+1} := B_\alpha \cup \{b_{\alpha+1}\}$.

Regularity Properties and Determinacy – p.25/27
Recall the question: “$D \rightarrow \text{Asym}(\mathbb{P})$ pointwise?”

Theorem: Suppose \mathbb{P} is represented by G_Φ which is non-trivial in the sense that I may choose between s and t with $s \perp t$. Then $D \not\rightarrow \text{Asym}_\Phi(\mathbb{P})$ pointwise.

Proof:

- Fix $s \in \omega^{<\omega}$ which “I may play in the first move”. Fix a σ with $s \notin \sigma$.
- Let $\langle T_\alpha \mid \alpha < 2^{\aleph_0} \rangle$ enumerate perfect trees and $\langle \tau_\alpha \mid \alpha < 2^{\aleph_0} \rangle$ II-strategies. Let $K_\alpha := \{ x \mid s \subseteq x \land x \text{ is a play according to } \tau_\alpha \}$
- By the non-triviality assumption, $|K_\alpha| = 2^{\aleph_0}$ for all α.
- Inductively find Bernstein components A and B as follows: given A_α, B_α, choose
 - $a_{\alpha+1} \in K_\alpha \setminus (A_\alpha \cup B_\alpha)$
 - $b_{\alpha+1} \in [T_\alpha] \setminus (A_\alpha \cup B_\alpha \cup \{ a_{\alpha+1} \})$
- and let $A_{\alpha+1} := A_\alpha \cup \{ a_{\alpha+1} \}$ and $B_{\alpha+1} := B_\alpha \cup \{ b_{\alpha+1} \}$.
- Then $A \cap [\sigma] = \emptyset$ so A is determined; A doesn’t contain a perfect tree by construction; II doesn’t have a winning strategy in $G_\Phi(A)$ because $\forall \tau_\alpha$, we have $a_{\alpha+1} \in A$ according to τ_α. \qed
Conclusion

There might be a better definition of $\text{Asym} (\mathbb{P})$, but as long as $\text{Asym} (\mathbb{P}) = \text{Asym}_\Phi (\mathbb{P})$ for some non-trivial G_Φ representing \mathbb{P}, we have

Conclusion: $D \not
rightarrow \text{Asym} (\mathbb{P})$ pointwise.

In particular $D \not
rightarrow \text{PSP}$, K_σ-regularity, u-regularity and Laver-regularity pointwise.
Thank you!

Yurii Khomskii
yurii@deds.nl