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Regularity Properties and Determinacy

Classical results: Assume the Axiom of Determinacy
(AD). Then all sets of reals are Lebesgue Measurable,
have the Baire property and the Perfect Set Property.
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Regularity Properties and Determinacy

Classical results: Assume the Axiom of Determinacy
(AD). Then all sets of reals are Lebesgue Measurable,
have the Baire property and the Perfect Set Property.

Example: AD → Baire property.
Proof:

Define the Banach-Mazur game, G∗∗.

Show: I wins G∗∗(A) ⇔ A is comeager in an open set,
II wins G∗∗(A) ⇔ A is meager.

If all sets satisfy that disjunction, then all sets have the
Baire property.
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Determinacy without AD

AD contradicts AC. Suppose, instead, that we have ZFC:
what is determinacy?

D := {A | G(A) is determined}
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Determinacy without AD

AD contradicts AC. Suppose, instead, that we have ZFC:
what is determinacy?

D := {A | G(A) is determined}

Is determinacy a “mother regularity property”, i.e., does it
imply all the other regularity properties?

Answer: it does classwise but not necessarily pointwise .
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Classwise vs. Pointwise

Let Γ be a boldface pointclass
(closed under continuous pre-images, and in some cases under intersections with basic

open sets).

If all sets in Γ are determined then all sets in Γ are regular.
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Classwise vs. Pointwise

Let Γ be a boldface pointclass
(closed under continuous pre-images, and in some cases under intersections with basic

open sets).

If all sets in Γ are determined then all sets in Γ are regular.

Definition: Let Reg be some regularity property. Then we
say:

“Determinacy implies Reg classwise” ⇐⇒
for all boldface pointclasses Γ (Γ ⊆ D → Γ ⊆ Reg).

“Determinacy implies Reg pointwise” ⇐⇒ D ⊆ Reg

Regularity Properties and Determinacy – p.4/27



Example

Example: Let Γ be a boldface pointclass. If Γ ⊆ D then
Γ ⊆ BP.
Proof:

Define the Banach-Mazur game, G∗∗.

Encode A A′ so that G∗∗(A) ≡ G(A′).

Then: I wins G(A′) ⇐⇒ A is comeager in an open set
II wins G(A′) ⇐⇒ A is meager.

If A ∈ Γ then A′ ∈ Γ so G(A′) is determined. Then A is
either comeager in an open set or meager.

If all sets in Γ have this property, then all sets in Γ have
the Baire property.
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Pointwise

Pointwise “mother regularity property” = e.g.
homogeneously Suslin sets, and not determinacy.

Benedikt Löwe, The pointwise view of determinacy: arboreal forcings,

measurability, and weak measurability , Rocky Mountains Journal of

Mathematics 35 (2005), pp. 1233–1249
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Pointwise

Pointwise “mother regularity property” = e.g.
homogeneously Suslin sets, and not determinacy.

Benedikt Löwe, The pointwise view of determinacy: arboreal forcings,

measurability, and weak measurability , Rocky Mountains Journal of

Mathematics 35 (2005), pp. 1233–1249

Sets can be determined
but not regular (AC).

My MSc thesis: continue this investigation.
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Arboreal Forcings

Definition:

A forcing partial order (P,≤) is called arboreal if it is
isomorphic to a collection T of perfect trees on ω or 2
ordered by inclusion, with the extra condition that

∀T ∈ T ∀t ∈ T ∃S ∈ T (S ⊆ T ∧ t ⊆ stem(S))

An arboreal (P,≤) is called topological if {[P ] | P ∈ P}
is a topology base on ωω or 2ω. Otherwise, it is called
non-topological .
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Examples

Some examples: (non-topological)

Sacks forcing S: all perfect trees.

Miller forcing M: all super-perfect trees.

Laver forcing L: all trees with finite stem and
afterwards ω-splitting.
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Examples (2)

Some examples: (topological)

Cohen forcing C: basic open sets [s].

Hechler forcing D: for s ∈ ω<ω and f ∈ ωω

with s ⊆ f , define [s, f ] := {x ∈ ωω | s ⊆

x ∧ ∀n ≥ |s|(x(n) ≥ f(n))}.
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Regularity Properties

Definition: Given (P,≤), we define

the Marczewski-Burstin algebra of P:
A ∈ MB(P) :⇐⇒ ∀P ∈ P ∃Q ≤ P ([Q] ⊆ A ∨ [Q] ∩ A = ∅)
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Regularity Properties

Definition: Given (P,≤), we define

the Marczewski-Burstin algebra of P:
A ∈ MB(P) :⇐⇒ ∀P ∈ P ∃Q ≤ P ([Q] ⊆ A ∨ [Q] ∩ A = ∅)

the weak Marczewski-Burstin algebra of P:
A ∈ wMB(P) :⇐⇒ ∃Q ∈ P ([Q] ⊆ A ∨ [Q] ∩ A = ∅)
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Regularity Properties

Definition: Given (P,≤), we define

the Marczewski-Burstin algebra of P:
A ∈ MB(P) :⇐⇒ ∀P ∈ P ∃Q ≤ P ([Q] ⊆ A ∨ [Q] ∩ A = ∅)

the weak Marczewski-Burstin algebra of P:
A ∈ wMB(P) :⇐⇒ ∃Q ∈ P ([Q] ⊆ A ∨ [Q] ∩ A = ∅)

If P is topological , then we define

BP(P) := {A | A has the Baire property in (ωω, P)}
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Pointwise View of Determinacy

In “The pointwise view of determinacy”, the following results
were proved: For non-topological P:

1. D 6→ MB(P) pointwise (i.e., D 6⊆ MB(P)).

2. P classified into three cases:
Case 1: D → wMB(P) pointwise.
Case 2: D 6→ wMB(P) pointwise.
Case 3: There are examples either way.

Regularity Properties and Determinacy – p.11/27



Pointwise View of Determinacy

In “The pointwise view of determinacy”, the following results
were proved: For non-topological P:

1. D 6→ MB(P) pointwise (i.e., D 6⊆ MB(P)).

2. P classified into three cases:
Case 1: D → wMB(P) pointwise.
Case 2: D 6→ wMB(P) pointwise.
Case 3: There are examples either way.

Question: Can the same analyzis be done for topological
P and BP(P)? What about wBP(P)?
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Baire Property

Theorem: If P is non-atomic then D 6→ BP(P) pointwise.
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Baire Property

Theorem: If P is non-atomic then D 6→ BP(P) pointwise.

Proof:
If A ∈ BP(P) then for every open O there is a perfect tree T in O such that [T ] ⊆ A or
[T ] ∩ A = ∅.
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Baire Property

Theorem: If P is non-atomic then D 6→ BP(P) pointwise.

Proof:
If A ∈ BP(P) then for every open O there is a perfect tree T in O such that [T ] ⊆ A or
[T ] ∩ A = ∅.

Find a P ∈ P and a strategy σ such that [P ] ∩ [σ] = ∅.
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Baire Property

Theorem: If P is non-atomic then D 6→ BP(P) pointwise.

Proof:
If A ∈ BP(P) then for every open O there is a perfect tree T in O such that [T ] ⊆ A or
[T ] ∩ A = ∅.

Find a P ∈ P and a strategy σ such that [P ] ∩ [σ] = ∅.

Let
〈

Tα | α < 2ℵ0

〉

enumerate all perfect trees in [P ].
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Baire Property

Theorem: If P is non-atomic then D 6→ BP(P) pointwise.

Proof:
If A ∈ BP(P) then for every open O there is a perfect tree T in O such that [T ] ⊆ A or
[T ] ∩ A = ∅.

Find a P ∈ P and a strategy σ such that [P ] ∩ [σ] = ∅.

Let
〈

Tα | α < 2ℵ0

〉

enumerate all perfect trees in [P ].

Since also |Tα| = 2ℵ0 , we find two Bernstein components A and B with A ∩ B = ∅

and
∀α < 2ℵ0 (A ∩ [Tα] 6= ∅ ∧ B ∩ [Tα] 6= ∅)
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Baire Property

Theorem: If P is non-atomic then D 6→ BP(P) pointwise.

Proof:
If A ∈ BP(P) then for every open O there is a perfect tree T in O such that [T ] ⊆ A or
[T ] ∩ A = ∅.

Find a P ∈ P and a strategy σ such that [P ] ∩ [σ] = ∅.

Let
〈

Tα | α < 2ℵ0

〉

enumerate all perfect trees in [P ].

Since also |Tα| = 2ℵ0 , we find two Bernstein components A and B with A ∩ B = ∅

and
∀α < 2ℵ0 (A ∩ [Tα] 6= ∅ ∧ B ∩ [Tα] 6= ∅)

Let A′ := A ∪ [σ]. Then for no perfect
tree T in [P ] do we have [T ] ⊆ A′ or
[T ] ∩ A′ = ∅, so neither A′ nor its com-
plement is in BP(P). But either A′ or its
complement is determined.
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Weak Baire property

How to define wBP(P)?
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Weak Baire property

How to define wBP(P)?

Use the following fact: A has the Baire property iff

∀O ∃U ⊆ O (U ∩ A is meager ∨ U \ A is meager)
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Weak Baire property

How to define wBP(P)?

Use the following fact: A has the Baire property iff

∀O ∃U ⊆ O (U ∩ A is meager ∨ U \ A is meager)

Definition: A has the weak Baire property iff

∃U (U ∩ A is meager ∨ U \ A is meager)

Regularity Properties and Determinacy – p.13/27



Three Cases

Consider the topological space (ωω, P) or (2ω, P).

Case 1: For every σ:

∃P ∈ P s.t. [P ] \ [σ] is meager

Case 2: For some σ:

∀P ∈ P ∃Q ≤ P s.t. [Q] ∩ [σ] is meager

Case 3: None of the above.
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Three Cases

Consider the topological space (ωω, P) or (2ω, P).

Case 1: For every σ:

∃P ∈ P s.t. [P ] \ [σ] is meager

Case 2: For some σ:

∀P ∈ P ∃Q ≤ P s.t. [Q] ∩ [σ] is meager

Case 3: None of the above.

Case 1: D → wBP(P) pointwise.

Case 2: D 6→ wBP(P) pointwise.

Case 3: ?
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Three Cases

Consider the topological space (ωω, P) or (2ω, P).

Case 1: For every σ:

∃P ∈ P s.t. [P ] \ [σ] is meager

Case 2: For some σ:

∀P ∈ P ∃Q ≤ P s.t. [Q] ∩ [σ] is meager

Case 3: None of the above.

Case 1: D → wBP(P) pointwise.

Case 2: D 6→ wBP(P) pointwise.

Case 3: ?

All standard P

belong to this
category
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Asymmetric Properties

Perfect Set Property: A is countable or contains a perfect
tree. This is an asymmetric property, saying that “A is big or
small”.

PSP = “Asym(S)” (Sacks forcing).

Analogous asymmetric properties have been defined for
other (P,≤).
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Asymmetric Properties

Perfect Set Property: A is countable or contains a perfect
tree. This is an asymmetric property, saying that “A is big or
small”.

PSP = “Asym(S)” (Sacks forcing).

Analogous asymmetric properties have been defined for
other (P,≤).

Question:

1. Is there a general definition for Asym(P)?

2. What about D → Asym(P) pointwise?
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Notions of Smallness

Definition:

For two reals x, y, define

x ≤∗ y :⇐⇒ ∀∞n (x(n) ≤ y(n))

A ⊆ ωω is σ-bounded iff ∃f ∀x ∈ A (x ≤∗ f).

A ⊆ ωω is dominating iff ∀f ∃x ∈ A (f ≤∗ x).

A ⊆ ωω is strongly dominating iff

∀f ∃x ∈ A ∀∞n [x(n + 1) > f(x(n))]
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Notions of Largeness

Definition:
Perfect tree : every node has an extension which is a splitting
node.

Super-perfect tree : every splitting node is ω-splitting and
every node has an extension which is an ω-splitting node.

Spinas tree : super-perfect tree such that for every t ∈ T :

∀s1, s2 (t_s1 and t_s2 are ω-splitting nodes of T → |s1| = |s2|)

i.e., the next splitting node is a fixed distance away from t.

Laver tree : the stem is finite, and after the stem, every node
is ω-splitting.
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Asymmetric properties

Forcing Largness Smallness Reg

C contains perfect tree countable PSP

M contains super-perfect tree σ-bounded Kσ-regularity

L∗ contains Spinas tree not dominating u-regularity

L contains Laver tree not strongly dominating Laver-regularity

What do all these properties have in common?
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Asymmetric games

Definition:

1. Asymmetric Game G•(A):

I : s0 s1 . . .

II : n1 n2 . . .

si ∈ ω<ω \ {∅}, ni ∈ ω

I wins iff

• ∀i ≥ 1: si(0) 6= ni

• x := s0
_s1

_s2
_ · · · ∈ A.
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Asymmetric games

Definition:

1. Asymmetric Game G•(A):

I : s0 s1 . . .

II : n1 n2 . . .

si ∈ ω<ω \ {∅}, ni ∈ ω

I wins iff

• ∀i ≥ 1: si(0) 6= ni

• x := s0
_s1

_s2
_ · · · ∈ A.

2. Kechris Game G̃(A):

I : s0 s1 . . .

II : n1 n2 . . .

si ∈ ω<ω \ {∅}, ni ∈ ω

I wins iff

• ∀i ≥ 1: si(0) ≥ ni

• x := s0
_s1

_s2
_ · · · ∈ A.
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Asymmetric games

Definition:

3. Spinas Game Gu(A):

I : (s0, k0) (s1, k1) . . .

II : n1 n2

si ∈ ω<ω\{∅}, ki ∈ ω\{0}, ni ∈ ω

I wins iff

• ∀i ≥ 1 : |si| = ki−1

• ∀i ≥ 1: si(0) ≥ ni

• x := s0
_s1

_s2
_ · · · ∈ A.
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Asymmetric games

Definition:

3. Spinas Game Gu(A):

I : (s0, k0) (s1, k1) . . .

II : n1 n2

si ∈ ω<ω\{∅}, ki ∈ ω\{0}, ni ∈ ω

I wins iff

• ∀i ≥ 1 : |si| = ki−1

• ∀i ≥ 1: si(0) ≥ ni

• x := s0
_s1

_s2
_ · · · ∈ A.

4. Goldstern Game D(A):

I : s0 k1 k2

II : n1 n2 . . .

si ∈ ω<ω \ {∅}, ki ∈ ω, ni ∈ ω

I wins iff

• ∀i ≥ 1: ki > ni

• x := s0
_ 〈k1, k2, . . . 〉 ∈ A
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Game Characterizations of Asym

Theorem: (Davis 1964; Kechris 1977; Spinas 1993; Goldstern et al 1995)

1. (a) I wins G•(A) ⇐⇒ A contains a perfect tree.

(b) II wins G•(A) ⇐⇒ A is countable.

2. (a) I wins G̃(A) ⇐⇒ A contains a super-perfect tree.

(b) II wins G̃(A) ⇐⇒ A is σ-bounded.

3. (a) I wins Gu(A) ⇐⇒ A contains a Spinas tree.

(b) II wins Gu(A) ⇐⇒ A is not dominating.

4. (a) I wins D(A) ⇐⇒ A contains a Laver tree.

(b) II wins D(A) ⇐⇒ A is not strongly dominating.
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Generalyzed Asymmetric Games

Definition: Start with set of parameters Φ := (R, r0, {Θn}n∈ω , f) where

• R ⊆ P(ω<ω) is a countable set of requirements .

• r0 ⊆ ω<ω is the initial requirement .

• The Θi are countable sets of additional information .

• f :
⋃

n
Θn −→ P(R).

Then the game GΦ(A) is defined as follows:

I : (s0, θ0) (s1, θ1) (s2, θ2) . . .

II : r1 r2 . . .

where si ∈ ω<ω \ {∅}, θi ∈ Θi, ri ∈ R ∩ f(θi−1)

I wins GΦ(A) iff

• s0 ∈ r0

• ∀i ≥ 1 : si ∈ ri

• x := s0
_s1

_s2
_ · · · ∈ A.
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Asymmetric Game Characterizations

Definition: Let (P,≤) be a forcing notion, and let GΦ be a generalized asymmetric
game. We say that GΦ represents P iff

∀A [I has a winning strategy in GΦ(A) ⇐⇒ ∃P ∈ P ([P ] ⊆ A)]
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Asymmetric Game Characterizations

Definition: Let (P,≤) be a forcing notion, and let GΦ be a generalized asymmetric
game. We say that GΦ represents P iff

∀A [I has a winning strategy in GΦ(A) ⇐⇒ ∃P ∈ P ([P ] ⊆ A)]

Definition: Suppose GΦ represents P. Then we define AsymΦ(P) by

A ∈ AsymΦ(P) :⇐⇒ ∃P ∈ P ([P ] ⊆ A) ∨ II wins GΦ(A)
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Asymmetric Game Characterizations

Definition: Let (P,≤) be a forcing notion, and let GΦ be a generalized asymmetric
game. We say that GΦ represents P iff

∀A [I has a winning strategy in GΦ(A) ⇐⇒ ∃P ∈ P ([P ] ⊆ A)]

Definition: Suppose GΦ represents P. Then we define AsymΦ(P) by

A ∈ AsymΦ(P) :⇐⇒ ∃P ∈ P ([P ] ⊆ A) ∨ II wins GΦ(A)

Examples:
• Let Φ• be the parameters corresponding to Davis’s asymmetric game G•(A). Then

Sacks forcing is represented by GΦ•
(A). Therefore we can write PSP = AsymΦ•

(S).

• Let Φ∼ be the parameters corresponding to the Kechris game G̃(A). Then Miller
forcing is represented by GΦ∼

(A). Therefore Kσ-regularity = AsymΦ∼
(M).
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Questions

Does every P have an asymmetric game GΦ which
represents it?

If so, is the representation unique?
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Questions

Does every P have an asymmetric game GΦ which
represents it?

If so, is the representation unique?

For example, Silver forcing probably doesn’t have a game
representation.
Silver forcing: uniform trees . Perfect trees T on 2ω such that

∀s, t ∈ T (|s| = |t| → {i | s_〈i〉 ∈ T} = {i | t_〈i〉 ∈ T})
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Pointwise Non-implication

Recall the question: “D → Asym(P) pointwise?”
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Pointwise Non-implication

Recall the question: “D → Asym(P) pointwise?”

Theorem: Suppose P is represented by GΦ which is non-trivial in the sense that I

may choose between s and t with s ⊥ t. Then D 6→ AsymΦ(P) pointwise.
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Pointwise Non-implication

Recall the question: “D → Asym(P) pointwise?”

Theorem: Suppose P is represented by GΦ which is non-trivial in the sense that I

may choose between s and t with s ⊥ t. Then D 6→ AsymΦ(P) pointwise.

Proof:
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Pointwise Non-implication

Recall the question: “D → Asym(P) pointwise?”

Theorem: Suppose P is represented by GΦ which is non-trivial in the sense that I

may choose between s and t with s ⊥ t. Then D 6→ AsymΦ(P) pointwise.

Proof:
• Fix s ∈ ω<ω which “I may play in the first move”. Fix a σ with s /∈ σ.
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Pointwise Non-implication

Recall the question: “D → Asym(P) pointwise?”

Theorem: Suppose P is represented by GΦ which is non-trivial in the sense that I

may choose between s and t with s ⊥ t. Then D 6→ AsymΦ(P) pointwise.

Proof:
• Fix s ∈ ω<ω which “I may play in the first move”. Fix a σ with s /∈ σ.

• Let
〈

Tα | α < 2ℵ0

〉

enumerate perfect trees and
〈

τα | α < 2ℵ0

〉

II-strategies. Let
Kα := {x | s ⊆ x ∧ x is a play according to τα}
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Pointwise Non-implication

Recall the question: “D → Asym(P) pointwise?”

Theorem: Suppose P is represented by GΦ which is non-trivial in the sense that I

may choose between s and t with s ⊥ t. Then D 6→ AsymΦ(P) pointwise.

Proof:
• Fix s ∈ ω<ω which “I may play in the first move”. Fix a σ with s /∈ σ.

• Let
〈

Tα | α < 2ℵ0

〉

enumerate perfect trees and
〈

τα | α < 2ℵ0

〉

II-strategies. Let
Kα := {x | s ⊆ x ∧ x is a play according to τα}

• By the non-triviality assumption, |Kα| = 2ℵ0 for all α.
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Pointwise Non-implication

Recall the question: “D → Asym(P) pointwise?”

Theorem: Suppose P is represented by GΦ which is non-trivial in the sense that I

may choose between s and t with s ⊥ t. Then D 6→ AsymΦ(P) pointwise.

Proof:
• Fix s ∈ ω<ω which “I may play in the first move”. Fix a σ with s /∈ σ.

• Let
〈

Tα | α < 2ℵ0

〉

enumerate perfect trees and
〈

τα | α < 2ℵ0

〉

II-strategies. Let
Kα := {x | s ⊆ x ∧ x is a play according to τα}

• By the non-triviality assumption, |Kα| = 2ℵ0 for all α.

• Inductively find Bernstein components A and B as follows: given Aα, Bα, choose

- aα+1 ∈ Kα \ (Aα ∪ Bα)

- bα+1 ∈ [Tα] \ (Aα ∪ Bα ∪ {aα+1})

and let Aα+1 := Aα ∪ {aα+1} and Bα+1 := Bα ∪ {bα+1}.
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Pointwise Non-implication

Recall the question: “D → Asym(P) pointwise?”

Theorem: Suppose P is represented by GΦ which is non-trivial in the sense that I

may choose between s and t with s ⊥ t. Then D 6→ AsymΦ(P) pointwise.

Proof:
• Fix s ∈ ω<ω which “I may play in the first move”. Fix a σ with s /∈ σ.

• Let
〈

Tα | α < 2ℵ0

〉

enumerate perfect trees and
〈

τα | α < 2ℵ0

〉

II-strategies. Let
Kα := {x | s ⊆ x ∧ x is a play according to τα}

• By the non-triviality assumption, |Kα| = 2ℵ0 for all α.

• Inductively find Bernstein components A and B as follows: given Aα, Bα, choose

- aα+1 ∈ Kα \ (Aα ∪ Bα)

- bα+1 ∈ [Tα] \ (Aα ∪ Bα ∪ {aα+1})

and let Aα+1 := Aα ∪ {aα+1} and Bα+1 := Bα ∪ {bα+1}.

• Then A ∩ [σ] = ∅ so A is determined; A doesn’t contain a perfect tree by
construction; II doesn’t have a winning strategy in GΦ(A) because ∀τα, we have
aα+1 ∈ A according to τα.

Regularity Properties and Determinacy – p.25/27



Conclusion

There might be a better definition of Asym(P), but as long
as Asym(P) = AsymΦ(P) for some non-trivial GΦ

representing P, we have

Conclusion: D 6→ Asym(P) pointwise.

In particular D 6→ PSP, Kσ-regularity, u-regularity and
Laver-regularity pointwise.
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Thank you!

Yurii Khomskii
yurii@deds.nl
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