Regularity Properties and Determinacy

Yurii Khomskii

yurii@deds.nl

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

University of Amsterdam

Regularity Properties and Determinacy

Classical results: Assume the **Axiom of Determinacy** (**AD**). Then all sets of reals are Lebesgue Measurable, have the **Baire property** and the **Perfect Set Property**.

Regularity Properties and Determinacy

Classical results: Assume the **Axiom of Determinacy** (**AD**). Then all sets of reals are Lebesgue Measurable, have the **Baire property** and the **Perfect Set Property**.

Example: $AD \rightarrow Baire property$. **Proof:**

- **Define the Banach-Mazur game**, G^{**} .
- Show: *I* wins $G^{**}(A) \Leftrightarrow A$ is comeager in an open set, *II* wins $G^{**}(A) \Leftrightarrow A$ is meager.
- If all sets satisfy that disjunction, then all sets have the Baire property.

Determinacy without AD

AD contradicts **AC**. Suppose, instead, that we have **ZFC**: what is determinacy?

 $\mathbf{D} := \{A \mid G(A) \text{ is determined}\}\$

Determinacy without AD

AD contradicts **AC**. Suppose, instead, that we have **ZFC**: what is determinacy?

 $\mathbf{D} := \{A \mid G(A) \text{ is determined}\}\$

Is determinacy a "mother regularity property", i.e., does it imply all the other regularity properties?

Answer: it does classwise but not necessarily pointwise.

Classwise vs. Pointwise

Let Γ be a boldface pointclass

(closed under continuous pre-images, and in some cases under intersections with basic open sets).

If all sets in Γ are determined then all sets in Γ are regular.

Classwise vs. Pointwise

Let Γ be a boldface pointclass

(closed under continuous pre-images, and in some cases under intersections with basic open sets).

If all sets in Γ are determined then all sets in Γ are regular.

Definition: Let **Reg** be some regularity property. Then we say:

- "Determinacy implies Reg classwise" \iff for all boldface pointclasses Γ ($\Gamma \subseteq D \rightarrow \Gamma \subseteq Reg$).
- "Determinacy implies Reg pointwise" \iff D \subseteq Reg

Example

Example: Let Γ be a boldface pointclass. If $\Gamma \subseteq D$ then $\Gamma \subseteq BP$. **Proof:**

- Define the Banach-Mazur game, G^{**} .
- Encode $A \rightsquigarrow A'$ so that $G^{**}(A) \equiv G(A')$.
- Then: I wins $G(A') \iff A$ is comeager in an open set II wins $G(A') \iff A$ is meager.
- If $A \in \Gamma$ then $A' \in \Gamma$ so G(A') is determined. Then A is either comeager in an open set or meager.
- If all sets in Γ have this property, then all sets in Γ have the Baire property.

Pointwise

Pointwise "mother regularity property" = e.g. **homogeneously Suslin** sets, and **not** determinacy.

Benedikt Löwe, **The pointwise view of determinacy: arboreal forcings, measurability, and weak measurability**, Rocky Mountains Journal of Mathematics **35** (2005), pp. 1233–1249

Pointwise

Pointwise "mother regularity property" = e.g. **homogeneously Suslin** sets, and **not** determinacy.

Benedikt Löwe, **The pointwise view of determinacy: arboreal forcings, measurability, and weak measurability**, Rocky Mountains Journal of Mathematics **35** (2005), pp. 1233–1249

Sets can be **determined** but not **regular** (AC).

My MSc thesis: continue this investigation.

Arboreal Forcings

Definition:

• A forcing partial order (\mathbb{P}, \leq) is called arboreal if it is isomorphic to a collection \mathfrak{T} of perfect trees on ω or 2 ordered by inclusion, with the extra condition that

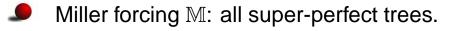
 $\forall T \in \mathfrak{T} \ \forall t \in T \ \exists S \in \mathfrak{T} \ (S \subseteq T \ \land \ t \subseteq \mathsf{stem}(S))$

An arboreal (P, ≤) is called topological if {[P] | P ∈ P} is a topology base on ω^ω or 2^ω. Otherwise, it is called non-topological.

Examples

Some examples: (non-topological)

Sacks forcing S: all perfect trees.

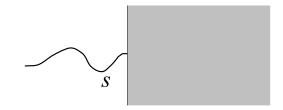


Laver forcing \mathbb{L} : all trees with finite stem and afterwards ω -splitting.

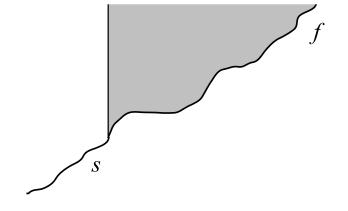
Examples (2)

Some examples: (topological)

Cohen forcing \mathbb{C} : basic open sets [s].



Hechler forcing \mathbb{D} : for $s \in \omega^{<\omega}$ and $f \in \omega^{\omega}$ with $s \subseteq f$, define $[s, f] := \{x \in \omega^{\omega} \mid s \subseteq x \land \forall n \ge |s|(x(n) \ge f(n))\}.$

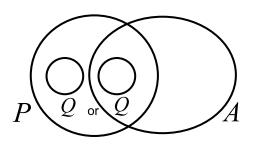


Regularity Properties

Definition: Given (\mathbb{P}, \leq) , we define

• the Marczewski-Burstin algebra of \mathbb{P} :

 $A \in \mathsf{MB}(\mathbb{P}) \ : \Longleftrightarrow \ \forall P \in \mathbb{P} \ \exists Q \leq P \ ([Q] \subseteq A \ \lor \ [Q] \cap A = \varnothing)$

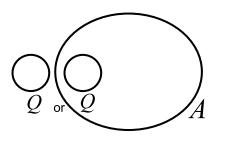


Regularity Properties

Definition: Given (\mathbb{P}, \leq) , we define

• the Marczewski-Burstin algebra of \mathbb{P} :

 $A \in \mathsf{MB}(\mathbb{P}) \iff \forall P \in \mathbb{P} \; \exists Q \le P \; ([Q] \subseteq A \; \lor \; [Q] \cap A = \varnothing)$



• the weak Marczewski-Burstin algebra of \mathbb{P} :

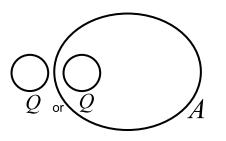
 $A \in \mathsf{wMB}(\mathbb{P}) :\iff \exists Q \in \mathbb{P} ([Q] \subseteq A \lor [Q] \cap A = \emptyset)$

Regularity Properties

Definition: Given (\mathbb{P}, \leq) , we define

• the Marczewski-Burstin algebra of \mathbb{P} :

 $A \in \mathsf{MB}(\mathbb{P}) \iff \forall P \in \mathbb{P} \; \exists Q \le P \; ([Q] \subseteq A \; \lor \; [Q] \cap A = \varnothing)$



- the weak Marczewski-Burstin algebra of \mathbb{P} : $A \in \mathsf{wMB}(\mathbb{P}) :\iff \exists Q \in \mathbb{P} ([Q] \subseteq A \lor [Q] \cap A = \emptyset)$
- If ℙ is topological, then we define
 BP(ℙ) := {A | A has the Baire property in (ω^ω, ℙ)}

Pointwise View of Determinacy

In "The pointwise view of determinacy", the following results were proved: For **non-topological** \mathbb{P} :

- 1. $D \not\rightarrow MB(\mathbb{P})$ pointwise (i.e., $D \not\subseteq MB(\mathbb{P})$).
- 2. \mathbb{P} classified into three cases:

Case 1: $D \rightarrow wMB(\mathbb{P})$ pointwise.

Case 2: $D \not\rightarrow wMB(\mathbb{P})$ pointwise.

Case 3: There are examples either way.

Pointwise View of Determinacy

In "The pointwise view of determinacy", the following results were proved: For **non-topological** \mathbb{P} :

- 1. $D \not\rightarrow MB(\mathbb{P})$ pointwise (i.e., $D \not\subseteq MB(\mathbb{P})$).
- 2. \mathbb{P} classified into three cases:

Case 1: $D \rightarrow wMB(\mathbb{P})$ pointwise.

Case 2: $D \not\rightarrow wMB(\mathbb{P})$ pointwise.

Case 3: There are examples either way.

Question: Can the same analyzis be done for topological \mathbb{P} and $BP(\mathbb{P})$? What about wBP(\mathbb{P})?

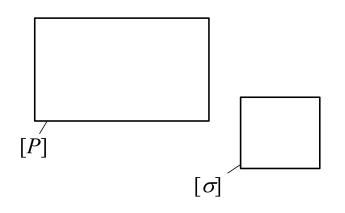
Theorem: If \mathbb{P} is **non-atomic** then $D \not\rightarrow \mathsf{BP}(\mathbb{P})$ pointwise.

Theorem: If \mathbb{P} is **non-atomic** then $D \not\rightarrow BP(\mathbb{P})$ pointwise. **Proof:**

If $A \in \mathsf{BP}(\mathbb{P})$ then for every open O there is a perfect tree T in O such that $[T] \subseteq A$ or $[T] \cap A = \emptyset$.

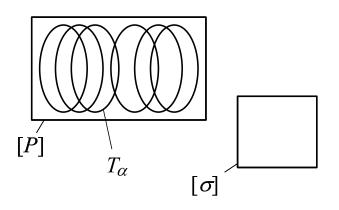
Theorem: If \mathbb{P} is **non-atomic** then $D \not\rightarrow BP(\mathbb{P})$ pointwise. **Proof:**

- If $A \in \mathsf{BP}(\mathbb{P})$ then for every open O there is a perfect tree T in O such that $[T] \subseteq A$ or $[T] \cap A = \emptyset$.
- **Find a** $P \in \mathbb{P}$ and a strategy σ such that $[P] \cap [\sigma] = \emptyset$.



Theorem: If \mathbb{P} is **non-atomic** then $D \not\rightarrow BP(\mathbb{P})$ pointwise. **Proof:**

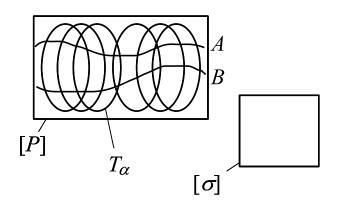
- If A ∈ BP(P) then for every open O there is a perfect tree T in O such that [T] ⊆ A or $[T] ∩ A = \emptyset.$
- **Find a** $P \in \mathbb{P}$ and a strategy σ such that $[P] \cap [\sigma] = \emptyset$.



Theorem: If \mathbb{P} is **non-atomic** then $D \not\rightarrow BP(\mathbb{P})$ pointwise. **Proof:**

- If $A \in \mathsf{BP}(\mathbb{P})$ then for every open O there is a perfect tree T in O such that $[T] \subseteq A$ or $[T] \cap A = \emptyset$.
- Find a $P \in \mathbb{P}$ and a strategy σ such that $[P] \cap [\sigma] = \emptyset$.
- Since also $|T_{\alpha}| = 2^{\aleph_0}$, we find two Bernstein components A and B with $A \cap B = \emptyset$ and

 $\forall \alpha < 2^{\aleph_0} \ (A \cap [T_\alpha] \neq \emptyset \land B \cap [T_\alpha] \neq \emptyset)$

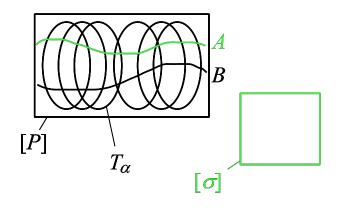


Theorem: If \mathbb{P} is **non-atomic** then $D \not\rightarrow BP(\mathbb{P})$ pointwise. **Proof:**

- If $A \in \mathsf{BP}(\mathbb{P})$ then for every open O there is a perfect tree T in O such that $[T] \subseteq A$ or $[T] \cap A = \emptyset$.
- **Find a** $P \in \mathbb{P}$ and a strategy σ such that $[P] \cap [\sigma] = \emptyset$.
- Since also $|T_{\alpha}| = 2^{\aleph_0}$, we find two Bernstein components A and B with $A \cap B = \emptyset$ and

$$\forall \alpha < 2^{\aleph_0} \ (A \cap [T_\alpha] \neq \emptyset \land B \cap [T_\alpha] \neq \emptyset)$$

■ Let $A' := A \cup [\sigma]$. Then for **no** perfect tree *T* in [*P*] do we have $[T] \subseteq A'$ or $[T] \cap A' = \emptyset$, so neither *A'* nor its complement is in BP(P). But either *A'* or its complement is determined. □



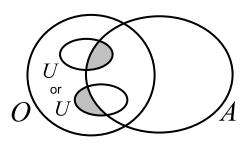
Weak Baire property

How to define $wBP(\mathbb{P})$?

Weak Baire property

How to define $wBP(\mathbb{P})$?

Use the following fact: *A* has the Baire property iff $\forall O \exists U \subseteq O \ (U \cap A \text{ is meager } \lor U \setminus A \text{ is meager})$

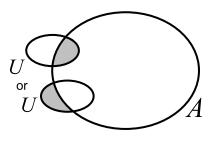


Weak Baire property

How to define $wBP(\mathbb{P})$?

Use the following fact: A has the Baire property iff

 $\forall O \exists U \subseteq O (U \cap A \text{ is meager } \lor U \setminus A \text{ is meager})$



Definition: *A* has the weak Baire property iff $\exists U \ (U \cap A \text{ is meager } \lor U \setminus A \text{ is meager})$

Three Cases

Consider the topological space $(\omega^{\omega}, \mathbb{P})$ or $(2^{\omega}, \mathbb{P})$.

Case 1: For every σ :

 $\exists P \in \mathbb{P} \text{ s.t. } [P] \setminus [\sigma] \text{ is meager}$

Case 2: For some σ :

 $\forall P \in \mathbb{P} \; \exists Q \leq P \text{ s.t. } [Q] \cap [\sigma] \text{ is meager}$

Case 3: None of the above.

Three Cases

Consider the topological space $(\omega^{\omega}, \mathbb{P})$ or $(2^{\omega}, \mathbb{P})$.

Case 1: For every σ :

 $\exists P \in \mathbb{P} \text{ s.t. } [P] \setminus [\sigma] \text{ is meager}$

Case 2: For some σ :

 $\forall P \in \mathbb{P} \ \exists Q \leq P \text{ s.t. } [Q] \cap [\sigma] \text{ is meager}$

Case 3: None of the above.

Case 1: $D \rightarrow wBP(\mathbb{P})$ pointwise.

Case 2: $D \not\rightarrow wBP(\mathbb{P})$ pointwise.

Case 3: ?

Three Cases

Consider the topological space $(\omega^{\omega}, \mathbb{P})$ or $(2^{\omega}, \mathbb{P})$.

Case 1: For every σ :

 $\exists P \in \mathbb{P} \text{ s.t. } [P] \setminus [\sigma] \text{ is meager}$

Case 2: For some σ :

 $\forall P \in \mathbb{P} \ \exists Q \leq P \text{ s.t. } [Q] \cap [\sigma] \text{ is meager}$

Case 3: None of the above.

Case 1: $D \rightarrow wBP(\mathbb{P})$ pointwise. Case 2: $D \not\rightarrow wBP(\mathbb{P})$ pointwise.

All standard \mathbb{P} belong to this category

Case 3: ?

Asymmetric Properties

Perfect Set Property: *A* is countable or contains a perfect tree. This is an asymmetric property, saying that "*A* is big or small".

PSP = "Asym(S)" (Sacks forcing).

Analogous asymmetric properties have been defined for other $(\mathbb{P},\leq).$

Asymmetric Properties

Perfect Set Property: *A* is countable or contains a perfect tree. This is an asymmetric property, saying that "*A* is big or small".

PSP = "Asym(S)" (Sacks forcing).

Analogous asymmetric properties have been defined for other $(\mathbb{P},\leq).$

Question:

- 1. Is there a general definition for $Asym(\mathbb{P})$?
- 2. What about $D \rightarrow Asym(\mathbb{P})$ pointwise?

Notions of Smallness

Definition:

• For two reals x, y, define

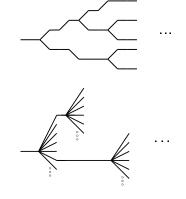
$$x \leq^* y :\iff \forall^{\infty} n \ (x(n) \leq y(n))$$

- $A \subseteq \omega^{\omega}$ is σ -bounded iff $\exists f \ \forall x \in A \ (x \leq^* f)$.
- $A \subseteq ω^{\omega}$ is **dominating** iff $\forall f \exists x \in A \ (f \leq^* x)$.
- $A \subseteq \omega^{\omega}$ is strongly dominating iff $\forall f \exists x \in A \ \forall^{\infty} n \ [x(n+1) > f(x(n))]$

Notions of Largeness

Definition:

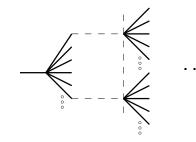
- Perfect tree: every node has an extension which is a splitting node.
- Super-perfect tree: every splitting node is ω -splitting and every node has an extension which is an ω -splitting node.



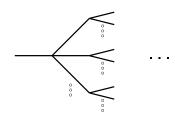
Spinas tree: super-perfect tree such that for every $t \in T$:

 $\forall s_1, s_2 \ (t \frown s_1 \text{ and } t \frown s_2 \text{ are } \omega \text{-splitting nodes of } T \to |s_1| = |s_2|)$

i.e., the next splitting node is a fixed distance away from t.



Laver tree: the stem is finite, and after the stem, every node is ω -splitting.



Asymmetric properties

Forcing	Largness	Smallness	Reg
\mathbb{C}	contains perfect tree	countable	PSP
\mathbb{M}	contains super-perfect tree	σ -bounded	K_{σ} -regularity
\mathbb{L}^*	contains Spinas tree	not dominating	u-regularity
\mathbb{L}	contains Laver tree	not strongly dominating	Laver-regularity

What do all these properties have in common?

Asymmetric games

Definition:

1. Asymmetric Game $G^{\bullet}(A)$:

I: s	0	s_1	•••	
II:	n_1	n_2		•••
$s_i \in \omega^{<\omega}$	$\setminus \{ \emptyset \},$	$n_i\in\omega$		

- \boldsymbol{I} wins iff
 - $\forall i \geq 1$: $s_i(0) \neq n_i$
 - $x := s_0 \frown s_1 \frown s_2 \frown \cdots \in A.$

Asymmetric games

Definition:

1. Asymmetric Game $G^{\bullet}(A)$:

I:	s_0		s_1		•••	
II:		n_1		n_2		•••

 $s_i \in \omega^{<\omega} \setminus \{\emptyset\}, \quad n_i \in \omega$

 \boldsymbol{I} wins iff

- $\forall i \geq 1$: $s_i(0) \neq n_i$
- $x := s_0 \frown s_1 \frown s_2 \frown \cdots \in A.$

2. Kechris Game $\tilde{G}(A)$:

 $s_i \in \omega^{<\omega} \setminus \{\emptyset\}, \quad n_i \in \omega$

I wins iff

- $\forall i \geq 1$: $s_i(0) \geq n_i$
- $x := s_0 \frown s_1 \frown s_2 \frown \cdots \in A.$

Asymmetric games

Definition:

3.	Spinas Game $G_u(A)$:						
	I:	(s_0,k_0)	(s_1,k_1)				
	II:		n_1	n_2			
	$s_i \in \omega^*$	$<\omega \setminus \{\varnothing\},$	$k_i \in \omega \setminus \{0\},$	$n_i\in\omega$			

I wins iff

- $\forall i \geq 1 : |s_i| = k_{i-1}$
- $\forall i \geq 1$: $s_i(0) \geq n_i$
- $x := s_0 \frown s_1 \frown s_2 \frown \cdots \in A.$

Asymmetric games

Definition:

$$\frac{I: (s_0, k_0) \qquad (s_1, k_1) \qquad \dots}{II: \qquad n_1 \qquad n_2}$$

$$s_i \in \omega^{<\omega} \setminus \{\varnothing\}, \quad k_i \in \omega \setminus \{0\}, \quad n_i \in \omega$$

4. Goldstern Game D(A):

3. Spinas Game $G_u(A)$:

I:	s_0		k_1		k_2	
II:		n_1		n_2		

 $s_i \in \omega^{<\omega} \setminus \{\emptyset\}, \quad k_i \in \omega, \quad n_i \in \omega$

I wins iff

- $\forall i \geq 1 : |s_i| = k_{i-1}$
- $\forall i \geq 1$: $s_i(0) \geq n_i$
- $x := s_0 \frown s_1 \frown s_2 \frown \cdots \in A.$

I wins iff

- $\forall i \geq 1$: $k_i > n_i$
- $x := s_0 \frown \langle k_1, k_2, \dots \rangle \in A$

Game Characterizations of Asym

Theorem: (Davis 1964; Kechris 1977; Spinas 1993; Goldstern et al 1995)

- 1. (a) I wins $G^{\bullet}(A) \iff A$ contains a perfect tree.
 - (b) II wins $G^{\bullet}(A) \iff A$ is countable.
- 2. (a) I wins G̃(A) ⇔ A contains a super-perfect tree.
 (b) II wins G̃(A) ⇔ A is σ-bounded.
- 3. (a) I wins $G_u(A) \iff A$ contains a Spinas tree.
 - (b) II wins $G_u(A) \iff A$ is not dominating.
- 4. (a) I wins D(A) ⇔ A contains a Laver tree.
 (b) II wins D(A) ⇔ A is not strongly dominating.

Generalyzed Asymmetric Games

Definition: Start with set of parameters $\Phi := (R, r^0, \{\Theta_n\}_{n \in \omega}, f)$ where

- $R \subseteq \mathscr{P}(\omega^{<\omega})$ is a countable set of **requirements**.
- $r^0 \subseteq \omega^{<\omega}$ is the initial requirement.
- The Θ_i are countable sets of additional information.

•
$$f: \bigcup_n \Theta_n \longrightarrow \mathscr{P}(R).$$

Then the game $G_{\Phi}(A)$ is defined as follows:

$$\begin{array}{cccc} I:&(s_0,\theta_0)&(s_1,\theta_1)&(s_2,\theta_2)&\dots\\\\ \hline II:&r_1&r_2&\dots\\\\ \text{where }s_i\in\omega^{<\omega}\setminus\{\varnothing\}, \ \ \theta_i\in\Theta_i, \ \ r_i\in R\cap f(\theta_{i-1}) \end{array}$$

I wins $G_{\Phi}(A)$ iff

- $s_0 \in r^0$
- $\forall i \geq 1 : s_i \in r_i$
- $x := s_0 \frown s_1 \frown s_2 \frown \cdots \in A.$

Asymmetric Game Characterizations

Definition: Let (\mathbb{P}, \leq) be a forcing notion, and let G_{Φ} be a generalized asymmetric game. We say that G_{Φ} represents \mathbb{P} iff

 $\forall A \ [I \text{ has a winning strategy in } G_{\Phi}(A) \iff \exists P \in \mathbb{P} \ ([P] \subseteq A)]$

Asymmetric Game Characterizations

Definition: Let (\mathbb{P}, \leq) be a forcing notion, and let G_{Φ} be a generalized asymmetric game. We say that G_{Φ} represents \mathbb{P} iff

 $\forall A \ [I \text{ has a winning strategy in } G_{\Phi}(A) \iff \exists P \in \mathbb{P} \ ([P] \subseteq A)]$

Definition: Suppose G_{Φ} represents \mathbb{P} . Then we define $\mathsf{Asym}_{\Phi}(\mathbb{P})$ by

 $A \in \mathsf{Asym}_{\Phi}(\mathbb{P}) :\iff \exists P \in \mathbb{P} ([P] \subseteq A) \lor II \text{ wins } G_{\Phi}(A)$

Asymmetric Game Characterizations

Definition: Let (\mathbb{P}, \leq) be a forcing notion, and let G_{Φ} be a generalized asymmetric game. We say that G_{Φ} represents \mathbb{P} iff

 $\forall A \ [I \text{ has a winning strategy in } G_{\Phi}(A) \iff \exists P \in \mathbb{P} \ ([P] \subseteq A)]$

Definition: Suppose G_{Φ} represents \mathbb{P} . Then we define $\operatorname{Asym}_{\Phi}(\mathbb{P})$ by

 $A \in \mathsf{Asym}_{\Phi}(\mathbb{P}) :\iff \exists P \in \mathbb{P} ([P] \subseteq A) \lor II \text{ wins } G_{\Phi}(A)$

Examples:

- Let Φ_{\bullet} be the parameters corresponding to Davis's asymmetric game $G^{\bullet}(A)$. Then Sacks forcing is represented by $G_{\Phi_{\bullet}}(A)$. Therefore we can write $\mathsf{PSP} = \mathsf{Asym}_{\Phi_{\bullet}}(\mathbb{S})$.
- Let Φ_{\sim} be the parameters corresponding to the Kechris game $\tilde{G}(A)$. Then Miller forcing is represented by $G_{\Phi_{\sim}}(A)$. Therefore K_{σ} -regularity = Asym_{\Phi_{\sim}}(\mathbb{M}).

Questions

- Does every \mathbb{P} have an asymmetric game G_{Φ} which represents it?
- If so, is the representation unique?

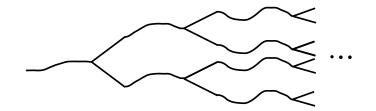
Questions

- Does every \mathbb{P} have an asymmetric game G_{Φ} which represents it?
- If so, is the representation unique?

For example, Silver forcing probably doesn't have a game representation.

Silver forcing: **uniform trees**. Perfect trees T on 2^{ω} such that

$$\forall s, t \in T \ (|s| = |t| \to \{i \mid s^{\frown} \langle i \rangle \in T\} = \{i \mid t^{\frown} \langle i \rangle \in T\})$$



Recall the question: " $D \rightarrow Asym(\mathbb{P})$ pointwise?"

Recall the question: " $D \rightarrow Asym(\mathbb{P})$ pointwise?"

Theorem: Suppose \mathbb{P} is represented by G_{Φ} which is non-trivial in the sense that I may choose between s and t with $s \perp t$. Then $\mathbf{D} \not\rightarrow \mathsf{Asym}_{\Phi}(\mathbb{P})$ pointwise.

Recall the question: " $D \rightarrow Asym(\mathbb{P})$ pointwise?"

Theorem: Suppose \mathbb{P} is represented by G_{Φ} which is non-trivial in the sense that I may choose between s and t with $s \perp t$. Then $\mathbf{D} \not\rightarrow \mathsf{Asym}_{\Phi}(\mathbb{P})$ pointwise.

Proof:

Recall the question: " $D \rightarrow Asym(\mathbb{P})$ pointwise?"

Theorem: Suppose \mathbb{P} is represented by G_{Φ} which is non-trivial in the sense that I may choose between s and t with $s \perp t$. Then $\mathbf{D} \not\rightarrow \mathsf{Asym}_{\Phi}(\mathbb{P})$ pointwise.

Proof:

• Fix $s \in \omega^{<\omega}$ which "*I* may play in the first move". Fix a σ with $s \notin \sigma$.

Recall the question: " $D \rightarrow Asym(\mathbb{P})$ pointwise?"

Theorem: Suppose \mathbb{P} is represented by G_{Φ} which is non-trivial in the sense that I may choose between s and t with $s \perp t$. Then $\mathbf{D} \not\rightarrow \mathsf{Asym}_{\Phi}(\mathbb{P})$ pointwise.

Proof:

- Fix $s \in \omega^{<\omega}$ which "*I* may play in the first move". Fix a σ with $s \notin \sigma$.
- Let $\langle T_{\alpha} \mid \alpha < 2^{\aleph_0} \rangle$ enumerate perfect trees and $\langle \tau_{\alpha} \mid \alpha < 2^{\aleph_0} \rangle$ *II*-strategies. Let $K_{\alpha} := \{x \mid s \subseteq x \land x \text{ is a play according to } \tau_{\alpha}\}$

Recall the question: " $D \rightarrow Asym(\mathbb{P})$ pointwise?"

Theorem: Suppose \mathbb{P} is represented by G_{Φ} which is non-trivial in the sense that I may choose between s and t with $s \perp t$. Then $\mathbf{D} \not\rightarrow \mathsf{Asym}_{\Phi}(\mathbb{P})$ pointwise.

Proof:

- Fix $s \in \omega^{<\omega}$ which "*I* may play in the first move". Fix a σ with $s \notin \sigma$.
- Let $\langle T_{\alpha} \mid \alpha < 2^{\aleph_0} \rangle$ enumerate perfect trees and $\langle \tau_{\alpha} \mid \alpha < 2^{\aleph_0} \rangle$ *II*-strategies. Let $K_{\alpha} := \{x \mid s \subseteq x \land x \text{ is a play according to } \tau_{\alpha}\}$
- By the non-triviality assumption, $|K_{\alpha}| = 2^{\aleph_0}$ for all α .

Recall the question: " $D \rightarrow Asym(\mathbb{P})$ pointwise?"

Theorem: Suppose \mathbb{P} is represented by G_{Φ} which is non-trivial in the sense that I may choose between s and t with $s \perp t$. Then $\mathbf{D} \not\rightarrow \mathsf{Asym}_{\Phi}(\mathbb{P})$ pointwise.

Proof:

- Fix $s \in \omega^{<\omega}$ which "*I* may play in the first move". Fix a σ with $s \notin \sigma$.
- Let $\langle T_{\alpha} \mid \alpha < 2^{\aleph_0} \rangle$ enumerate perfect trees and $\langle \tau_{\alpha} \mid \alpha < 2^{\aleph_0} \rangle$ *II*-strategies. Let $K_{\alpha} := \{x \mid s \subseteq x \land x \text{ is a play according to } \tau_{\alpha}\}$
- By the non-triviality assumption, $|K_{\alpha}| = 2^{\aleph_0}$ for all α .
- Inductively find Bernstein components A and B as follows: given A_{α} , B_{α} , choose
 - $a_{\alpha+1} \in K_{\alpha} \setminus (A_{\alpha} \cup B_{\alpha})$
 - $b_{\alpha+1} \in [T_{\alpha}] \setminus (A_{\alpha} \cup B_{\alpha} \cup \{a_{\alpha+1}\})$

and let $A_{\alpha+1} := A_{\alpha} \cup \{a_{\alpha+1}\}$ and $B_{\alpha+1} := B_{\alpha} \cup \{b_{\alpha+1}\}.$

Recall the question: " $D \rightarrow Asym(\mathbb{P})$ pointwise?"

Theorem: Suppose \mathbb{P} is represented by G_{Φ} which is non-trivial in the sense that I may choose between s and t with $s \perp t$. Then $\mathbf{D} \not\rightarrow \mathsf{Asym}_{\Phi}(\mathbb{P})$ pointwise.

Proof:

- Fix $s \in \omega^{<\omega}$ which "*I* may play in the first move". Fix a σ with $s \notin \sigma$.
- Let $\langle T_{\alpha} \mid \alpha < 2^{\aleph_0} \rangle$ enumerate perfect trees and $\langle \tau_{\alpha} \mid \alpha < 2^{\aleph_0} \rangle$ *II*-strategies. Let $K_{\alpha} := \{x \mid s \subseteq x \land x \text{ is a play according to } \tau_{\alpha}\}$
- By the non-triviality assumption, $|K_{\alpha}| = 2^{\aleph_0}$ for all α .
- Inductively find Bernstein components A and B as follows: given A_{α} , B_{α} , choose
 - $a_{\alpha+1} \in K_{\alpha} \setminus (A_{\alpha} \cup B_{\alpha})$
 - $b_{\alpha+1} \in [T_{\alpha}] \setminus (A_{\alpha} \cup B_{\alpha} \cup \{a_{\alpha+1}\})$

and let $A_{\alpha+1} := A_{\alpha} \cup \{a_{\alpha+1}\}$ and $B_{\alpha+1} := B_{\alpha} \cup \{b_{\alpha+1}\}$.

Then A ∩ [σ] = Ø so A is determined; A doesn't contain a perfect tree by construction; II doesn't have a winning strategy in G_Φ(A) because ∀τ_α, we have a_{α+1} ∈ A according to τ_α.

Conclusion

There might be a better definition of $Asym(\mathbb{P})$, but as long as $Asym(\mathbb{P}) = Asym_{\Phi}(\mathbb{P})$ for some non-trivial G_{Φ} representing \mathbb{P} , we have

Conclusion: $D \not\rightarrow Asym(\mathbb{P})$ pointwise.

In particular $D \not\rightarrow PSP$, K_{σ} -regularity, u-regularity and Laver-regularity pointwise.

Thank you!

Yurii Khomskii yurii@deds.nl

Regularity Properties and Determinacy - p.27/2