Regularity and Definability

Yurii Khomskii University of Amsterdam

PhDs in Logic III Brussels, 17 February 2011

< 17 ▶

Э

SQC

• The continuum (\mathbb{R} , \mathbb{R}^2 , $\mathcal{P}(\omega)$, ω^{ω} , 2^{ω} , ...).

The setting

- The continuum (\mathbb{R} , \mathbb{R}^2 , $\mathcal{P}(\omega)$, ω^{ω} , 2^{ω} , ...).
- Subsets of the continuum \approx "objects in space".

< □ > < 同 > <

3

Sac

The setting

- The continuum (\mathbb{R} , \mathbb{R}^2 , $\mathcal{P}(\omega)$, ω^{ω} , 2^{ω} , ...).
- \bullet Subsets of the continuum \approx "objects in space".
- Regularity properties vs. definability of these objects.

< 🗇 ▶

The setting

- The continuum (\mathbb{R} , \mathbb{R}^2 , $\mathcal{P}(\omega)$, ω^{ω} , 2^{ω} , ...).
- \bullet Subsets of the continuum \approx "objects in space".
- Regularity properties vs. definability of these objects.
- Regularity.
 - Lebesgue measure,
 - Baire property,
 - Ramsey property, ...

The setting

- The continuum (\mathbb{R} , \mathbb{R}^2 , $\mathcal{P}(\omega)$, ω^{ω} , 2^{ω} , ...).
- \bullet Subsets of the continuum \approx "objects in space".
- Regularity properties vs. definability of these objects.
- Regularity.
 - Lebesgue measure,
 - Baire property,
 - Ramsey property, ...
- Oefinability.
 - Classifying sets according to logical complexity.

The setting

- The continuum (\mathbb{R} , \mathbb{R}^2 , $\mathcal{P}(\omega)$, ω^{ω} , 2^{ω} , ...).
- Subsets of the continuum pprox "objects in space".
- Regularity properties vs. definability of these objects.
- Regularity.
 - Lebesgue measure,
 - Baire property,
 - Ramsey property, ...
- Oefinability.
 - Classifying sets according to logical complexity.
- Selationship between these.
 - Independence from ZFC (forcing extensions over L).

590

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

What do we mean by "regularity properties" of sets of reals?

What do we mean by "regularity properties" of sets of reals? **Example 1.** Lebesgue measure.

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆ 母 ト ◆ 母 ト

What do we mean by "regularity properties" of sets of reals?

Example 1. Lebesgue measure.

• For $q < q' \in \mathbb{Q}$, $\mu([q,q']) := q' - q$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ・ つくで

What do we mean by "regularity properties" of sets of reals?

Example 1. Lebesgue measure.

- For $q < q' \in \mathbb{Q}$, $\mu([q, q']) := q' q$.
- Naturally extend to Borel subsets of \mathbb{R} .

4 / 21

What do we mean by "regularity properties" of sets of reals?

Example 1. Lebesgue measure.

- For $q < q' \in \mathbb{Q}$, $\mu([q,q']) := q' q$.
- Naturally extend to Borel subsets of \mathbb{R} .
- $A \subseteq \mathbb{R}$ is Lebesgue-null if $\exists B$ Borel with $A \subseteq B$ and $\mu(B) = 0$.

What do we mean by "regularity properties" of sets of reals?

Example 1. Lebesgue measure.

- For $q < q' \in \mathbb{Q}$, $\mu([q,q']) := q' q$.
- Naturally extend to Borel subsets of \mathbb{R} .
- $A \subseteq \mathbb{R}$ is Lebesgue-null if $\exists B$ Borel with $A \subseteq B$ and $\mu(B) = 0$.
- A is Lebesgue-measurable if ∃B Borel such that (A \ B) ∪ (B \ A) is Lebesgue-null.

What do we mean by "regularity properties" of sets of reals?

Example 1. Lebesgue measure.

- For $q < q' \in \mathbb{Q}$, $\mu([q,q']) := q' q$.
- Naturally extend to Borel subsets of \mathbb{R} .
- $A \subseteq \mathbb{R}$ is Lebesgue-null if $\exists B$ Borel with $A \subseteq B$ and $\mu(B) = 0$.
- A is Lebesgue-measurable if ∃B Borel such that (A \ B) ∪ (B \ A) is Lebesgue-null.

Captures the intuition of "size" or "volume" of a set of reals ("object in space").

Can naturally be extended to \mathbb{R}^n .

However, there are non-Lebesgue-measurable sets (Vitali, 1905).

500

イロト イポト イヨト イヨト

Measure

However, there are non-Lebesgue-measurable sets (Vitali, 1905).

Proof.

If A is Lebesgue-measurable then there exists a perfect set P with $\mu(P) > 0$ s.t. $P \subseteq A$ or $P \cap A = \emptyset$. Use Axiom of Choice to diagonalize against perfect sets.

200

Measure

However, there are non-Lebesgue-measurable sets (Vitali, 1905).

Proof.

If A is Lebesgue-measurable then there exists a perfect set P with $\mu(P) > 0$ s.t. $P \subseteq A$ or $P \cap A = \emptyset$. Use Axiom of Choice to diagonalize against perfect sets.

Another proof.

```
Let U be an ultrafiler on \omega. Identify \mathcal{P}(\omega) with 2^{\omega}, then U is non-Lebesgue-measurable.
```

Measure

However, there are non-Lebesgue-measurable sets (Vitali, 1905).

Proof.

If A is Lebesgue-measurable then there exists a perfect set P with $\mu(P) > 0$ s.t. $P \subseteq A$ or $P \cap A = \emptyset$. Use Axiom of Choice to diagonalize against perfect sets.

Another proof.

Let U be an ultrafiler on ω . Identify $\mathcal{P}(\omega)$ with 2^{ω} , then U is non-Lebesgue-measurable.

Problematic consequences for spatial reasoning, e.g., Banach-Tarski paradox.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

SQA

Other examples

• $A \subseteq \mathbb{R}$ has the Baire property if $\exists B$ Borel such that $(A \setminus B) \cup (B \setminus A)$ is meager.

200

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Other examples

- A ⊆ ℝ has the Baire property if ∃B Borel such that (A \ B) ∪ (B \ A) is meager.
- A ⊆ ℝ is Marczewski-measurable if for every perfect set P there is a perfect subset Q ⊆ P such that Q ⊆ A or Q ∩ A = Ø.

Other examples

- A ⊆ ℝ has the Baire property if ∃B Borel such that (A \ B) ∪ (B \ A) is meager.
- A ⊆ ℝ is Marczewski-measurable if for every perfect set P there is a perfect subset Q ⊆ P such that Q ⊆ A or Q ∩ A = Ø.
- Ramsey property, doughnut property, perfect set property, K_{σ} -regularity,

Other examples

- A ⊆ ℝ has the Baire property if ∃B Borel such that (A \ B) ∪ (B \ A) is meager.
- A ⊆ ℝ is Marczewski-measurable if for every perfect set P there is a perfect subset Q ⊆ P such that Q ⊆ A or Q ∩ A = Ø.
- Ramsey property, doughnut property, perfect set property, K_{σ} -regularity,

In each case, we can find counterexamples.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Other examples

- A ⊆ ℝ has the Baire property if ∃B Borel such that (A \ B) ∪ (B \ A) is meager.
- A ⊆ ℝ is Marczewski-measurable if for every perfect set P there is a perfect subset Q ⊆ P such that Q ⊆ A or Q ∩ A = Ø.
- Ramsey property, doughnut property, perfect set property, K_{σ} -regularity,

In each case, we can find counterexamples. But...

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Other examples

- A ⊆ ℝ has the Baire property if ∃B Borel such that (A \ B) ∪ (B \ A) is meager.
- A ⊆ ℝ is Marczewski-measurable if for every perfect set P there is a perfect subset Q ⊆ P such that Q ⊆ A or Q ∩ A = Ø.
- Ramsey property, doughnut property, perfect set property, K_{σ} -regularity,

In each case, we can find counterexamples. But... typical construction involves induction along a *well-ordering of the continuum* (Axiom of Choice).

Other examples

- A ⊆ ℝ has the Baire property if ∃B Borel such that (A \ B) ∪ (B \ A) is meager.
- A ⊆ ℝ is Marczewski-measurable if for every perfect set P there is a perfect subset Q ⊆ P such that Q ⊆ A or Q ∩ A = Ø.
- Ramsey property, doughnut property, perfect set property, K_{σ} -regularity,

In each case, we can find counterexamples. But... typical construction involves induction along a *well-ordering of the continuum* (Axiom of Choice).

Question

Can we find an explicit example of a non-regular set? (and what does that even mean?)

nac

・ロト ・ 同ト ・ ヨト ・ ヨー

2. Definability

3

590

イロト イポト イヨト イヨト

Descriptive set theory

Descriptive set theory: not just about sets, but about their *descriptions* or *definitions*.

3

590

イロト イポト イヨト イヨト

Descriptive set theory

Descriptive set theory: not just about sets, but about their *descriptions* or *definitions*.

Focus on second-order number theory (\mathbb{N}^2) :

- Variables range over natural numbers or real numbers.
- Natural number quantifiers: $\exists^0 \ \forall^0$,
- Real number quantifiers: $\exists^1 \forall^1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Descriptive set theory

Descriptive set theory: not just about sets, but about their *descriptions* or *definitions*.

Focus on second-order number theory (\mathbb{N}^2) :

- Variables range over natural numbers or real numbers.
- Natural number quantifiers: $\exists^0 \forall^0$,
- Real number quantifiers: $\exists^1 \forall^1$.

Complexity of \mathbb{N}^2 -formulas: $\Sigma_n^0, \Pi_n^0, \ldots, \Sigma_n^1, \Pi_n^1, \ldots$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Complexity of sets

Complexity of a set of reals measured by complexity of defining $\ensuremath{\mathbb{N}}^2\text{-}\mathsf{formula}.$

$$A = \{x \in \mathbb{R} \mid \mathbb{N}^2 \models \phi(x, a)\}$$

Note that we allow a fixed real parameter $a \in \mathbb{R}$ in the definition.

Complexity of sets

Complexity of a set of reals measured by complexity of defining $\ensuremath{\mathbb{N}}^2\text{-}\mathsf{formula}.$

$$A = \{x \in \mathbb{R} \mid \mathbb{N}^2 \models \phi(x, a)\}$$

Note that we allow a fixed real parameter $a \in \mathbb{R}$ in the definition.

Definition

We say "A has complexity $\Sigma_n^i (\Pi_n^i)$ " iff ϕ has complexity $\Sigma_n^i (\Pi_n^i)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Complexity of sets

Complexity of a set of reals measured by complexity of defining $\ensuremath{\mathbb{N}}^2\text{-}\mathsf{formula}.$

$$A = \{x \in \mathbb{R} \mid \mathbb{N}^2 \models \phi(x, a)\}$$

Note that we allow a fixed real parameter $a \in \mathbb{R}$ in the definition.

Definition

We say "A has complexity $\boldsymbol{\Sigma}_{n}^{i} (\boldsymbol{\Pi}_{n}^{i})$ " iff ϕ has complexity $\boldsymbol{\Sigma}_{n}^{i} (\boldsymbol{\Pi}_{n}^{i})$.

Relation with topology:

- $\boldsymbol{\Sigma}_1^0 = \mathsf{open}$,
- $\Pi_1^0 = \text{closed},$
- $\mathbf{\Delta}_1^1 = \mathsf{Borel},$
- Σ_1^1 = analytic (continuous image of Borel).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Hierarchy

Image: A math and a

< E

Э

990

Hierarchy

• All Σ_1^1 sets are regular.

< 3

< 17 ▶

Э

990

Hierarchy

- All Σ_1^1 sets are regular.
- For many properties, also all Π_1^1 sets are regular.

< E

▲ 🗇 🕨 🔺

Hierarchy

- All Σ_1^1 sets are regular.
- For many properties, also all Π_1^1 sets are regular.
- Irregular sets (produced by AC) may lie far outside this hierarchy.

Hierarchy

- All Σ_1^1 sets are regular.
- For many properties, also all Π_1^1 sets are regular.
- Irregular sets (produced by AC) may lie far outside this hierarchy.

So "paradoxes" cannot occur if we restrict attention to analytic/co-analytic sets.

Second level

So on which level do things go wrong?

◆ロ ▶ ◆ 昂 ▶ ◆ 臣 ▶ ◆ 臣 ■ ● ● ● ●

Second level

So on which level do things go wrong?

Question: Does the assertion "all Σ_2^1 sets are regular" hold?

Second level

So on which level do things go wrong?

Question: Does the assertion "all Σ_2^1 sets are regular" hold?

Answer: It is independent of ZFC!

3. Independence results

< 日 > < 同 > < 三 > < 三 >

= 900

 $\mathbf{L} = \mathbf{G} \ddot{\mathbf{o}} \mathbf{d} \mathbf{e} \mathbf{l}$'s constructible universe.

E ∽QQ

(日) (同) (三) (三) (三)

- $L = G \ddot{o} del's$ constructible universe.
 - There is a Σ_2^1 -definable well-ordering of the continuum.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

13 / 21

- $L = G \ddot{o} del's$ constructible universe.
 - There is a Σ_2^1 -definable well-ordering of the continuum.
 - Therefore irregularity exists on the Σ_2^1 (even Δ_2^1) level.

13 / 21

- $L = G \ddot{o} del's$ constructible universe.
 - There is a $\pmb{\Sigma}_2^1\text{-definable}$ well-ordering of the continuum.
 - Therefore irregularity exists on the $\pmb{\Sigma}_2^1$ (even $\pmb{\Delta}_2^1)$ level.

Forcing over L.

By forcing we can add new reals, destroy Σ¹₂ well-ordering. Does irregularity disappear?

- $L = G \ddot{o} del's$ constructible universe.
 - There is a $\pmb{\Sigma}_2^1\text{-definable}$ well-ordering of the continuum.
 - Therefore irregularity exists on the $\pmb{\Sigma}_2^1$ (even $\pmb{\Delta}_2^1)$ level.

Forcing over L.

- By forcing we can add new reals, destroy Σ¹₂ well-ordering. Does irregularity disappear?
 - If we add "many" reals, yes.
 - If we add "not so many" reals, perhaps not.

↓ ∃ ▶ ∃ • ∩ Q (•

- $L = G \ddot{o} del's$ constructible universe.
 - There is a $\pmb{\Sigma}_2^1\text{-definable}$ well-ordering of the continuum.
 - Therefore irregularity exists on the $\pmb{\Sigma}_2^1$ (even $\pmb{\Delta}_2^1)$ level.

Forcing over L.

- By forcing we can add new reals, destroy Σ¹₂ well-ordering. Does irregularity disappear?
 - If we add "many" reals, yes.
 - If we add "not so many" reals, perhaps not.
- In fact, we can say exactly which reals must be added to obtain regularity on $\pmb{\Sigma}_2^1/\pmb{\Delta}_2^1$ level.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = - のぐぐ

Solovay-Judah-Shelah characterizations

Theorem (Judah-Shelah 1989)

The following are equivalent:

• All Δ_2^1 sets are Lebesgue-measurable,

2 For all $a \in \mathbb{R}$ there is a random-generic real over L[a].

Solovay-Judah-Shelah characterizations

Theorem (Judah-Shelah 1989)

The following are equivalent:

• All Δ_2^1 sets are Lebesgue-measurable,

2 For all $a \in \mathbb{R}$ there is a random-generic real over L[a].

Theorem (Solovay 1969)

The following are equivalent:

- All Σ_2^1 sets are Lebesgue-measurable,
- **2** For all $a \in \mathbb{R}$, "almost all" reals are random-generic over L[a].

イロト イポト イヨト イヨト 三日

Solovay-Judah-Shelah characterizations

Theorem (Judah-Shelah 1989)

The following are equivalent:

• All Δ_2^1 sets have the Baire property,

2 For all $a \in \mathbb{R}$ there is a Cohen-generic real over L[a].

Theorem (Solovay 1969)

The following are equivalent:

- All Σ_2^1 sets have the Baire property,
- **2** For all $a \in \mathbb{R}$, "almost all" reals are Cohen-generic over L[a].

イロト イポト イヨト イヨト 三日

Statements "all Σ_2^1 (Δ_2^1) sets are regular" correspond to "transcendence over L".

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ・ つくで

Statements "all Σ_2^1 (Δ_2^1) sets are regular" correspond to "transcendence over L".

Since transcendence over $\boldsymbol{\mathsf{L}}$ can (to some extend) be controlled by forcing, so can regularity.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

16 / 21

Statements "all Σ_2^1 (Δ_2^1) sets are regular" correspond to "transcendence over L".

Since transcendence over ${\bm L}$ can (to some extend) be controlled by forcing, so can regularity.

Example 1. Random forcing adds random-generic reals but not Cohen-generic reals.

Statements "all Σ_2^1 (Δ_2^1) sets are regular" correspond to "transcendence over L".

Since transcendence over ${\bm L}$ can (to some extend) be controlled by forcing, so can regularity.

Example 1. Random forcing adds random-generic reals but not Cohen-generic reals. Therefore, if we iterate random forcing for \aleph_1 steps, we get a model where all Δ_2^1 sets are Lebesgue measurable, but not all Δ_2^1 sets have the Baire property.

Statements "all Σ_2^1 (Δ_2^1) sets are regular" correspond to "transcendence over L".

Since transcendence over ${\bm L}$ can (to some extend) be controlled by forcing, so can regularity.

Example 1. Random forcing adds random-generic reals but not Cohen-generic reals. Therefore, if we iterate random forcing for \aleph_1 steps, we get a model where all Δ_2^1 sets are Lebesgue measurable, but not all Δ_2^1 sets have the Baire property.

Example 2. Cohen forcing adds Cohen-generic reals but not random-generic reals. Therefore, if we iterate Cohen forcing (for \aleph_1 steps), we get a model where all Δ_2^1 sets have the Baire property but not all Δ_2^1 sets are Lebesgue measurable.

Strength of measurability

On the other hand, some properties are stronger than others:

Theorem (Bartoszyński-Raisonnier-Stern 1984/1985)

If all Σ_2^1 sets are Lebesgue measurable then all Σ_2^1 sets have the Baire property.

Strength of measurability

On the other hand, some properties are stronger than others:

Theorem (Bartoszyński-Raisonnier-Stern 1984/1985)

If all Σ_2^1 sets are Lebesgue measurable then all Σ_2^1 sets have the Baire property.

Measurability statements have various "strength", corresponding to strength of transcendence statements.

Strength of measurability

On the other hand, some properties are stronger than others:

Theorem (Bartoszyński-Raisonnier-Stern 1984/1985)

If all Σ_2^1 sets are Lebesgue measurable then all Σ_2^1 sets have the Baire property.

Measurability statements have various "strength", corresponding to strength of transcendence statements.

17 / 21

Brendle & Löwe, Eventually different functions and inaccessible cardinals.

< 17 ▶

990

Independence results

Typical questions in this field:

(日) (同) (三) (三) (三)

Typical questions in this field:

• Given a regularity property, characterize it by transcendence property.

Typical questions in this field:

- Given a regularity property, characterize it by transcendence property.
- **②** Given a *transcendence* property, characterize it by regularity.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへ⊙

20 / 21

Typical questions in this field:

- Given a regularity property, characterize it by transcendence property.
- **2** Given a *transcendence* property, characterize it by regularity.
- Find general Solovay-Judah-Shelah-style theorems (some work done by Daisuke Ikegami; still many open questions).

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = - のぐぐ

20 / 21

Typical questions in this field:

- Given a regularity property, characterize it by transcendence property.
- **2** Given a *transcendence* property, characterize it by regularity.
- Find general Solovay-Judah-Shelah-style theorems (some work done by Daisuke Ikegami; still many open questions).
- Prove implications from $\Sigma_2^1/\Delta_2^1(\text{Reg}_1)$ to $\Sigma_2^1/\Delta_2^1(\text{Reg}_2)$, or produce a model which separates Reg₁ from Reg₂.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = - のぐぐ

Typical questions in this field:

- Given a regularity property, characterize it by transcendence property.
- **②** Given a *transcendence* property, characterize it by regularity.
- Find general Solovay-Judah-Shelah-style theorems (some work done by Daisuke Ikegami; still many open questions).
- Prove implications from $\Sigma_2^1/\Delta_2^1(\text{Reg}_1)$ to $\Sigma_2^1/\Delta_2^1(\text{Reg}_2)$, or produce a model which separates Reg_1 from Reg_2 .
- For some properties, whether it holds on the Σ¹₁ or even Borel level is still open (e.g., does there exist a Borel maximal family of eventually different functions?)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Thank you!

Yurii Khomskii

yurii@deds.nl