Regularity and Definability

Yuri Khomskii
University of Amsterdam

PhDs in Logic III
Brussels, 17 February 2011
The setting

- The continuum \((\mathbb{R}, \mathbb{R}^2, \mathcal{P}(\omega), \omega^\omega, 2^\omega, \ldots)\).
The setting

- The continuum \((\mathbb{R}, \mathbb{R}^2, \mathcal{P}(\omega), \omega^\omega, 2^\omega, \ldots)\).
- Subsets of the continuum \(\approx\) “objects in space”.
The setting

- The **continuum** \((\mathbb{R}, \mathbb{R}^2, \mathcal{P}(\omega), \omega^\omega, 2^\omega, \ldots)\).
- Subsets of the continuum \(\approx\) “objects in space”.
- *Regularity* properties vs. *definability* of these objects.
The setting

- The **continuum** \((\mathbb{R}, \mathbb{R}^2, \mathcal{P}(\omega), \omega^\omega, 2^\omega, \ldots)\).
- Subsets of the continuum \(\approx\) “objects in space”.
- *Regularity* properties vs. *definability* of these objects.

1. **Regularity.**
 - Lebesgue measure,
 - Baire property,
 - Ramsey property, \ldots
The setting

- **The continuum** \((\mathbb{R}, \mathbb{R}^2, \mathcal{P}(\omega), \omega^\omega, 2^\omega, \ldots)\).
- Subsets of the continuum \(\approx\) “objects in space”.
- *Regularity* properties vs. *definability* of these objects.

1. **Regularity.**
 - Lebesgue measure,
 - Baire property,
 - Ramsey property, \ldots

2. **Definability.**
 - Classifying sets according to logical complexity.
The setting

- The **continuum** \((\mathbb{R}, \mathbb{R}^2, \mathcal{P}(\omega), \omega^\omega, 2^\omega, \ldots)\).
- Subsets of the continuum \(\approx\) “objects in space”.
- **Regularity** properties vs. **definability** of these objects.

1. **Regularity.**
 - Lebesgue measure,
 - Baire property,
 - Ramsey property, ...

2. **Definability.**
 - Classifying sets according to logical complexity.

3. **Relationship between these.**
 - Independence from ZFC (forcing extensions over \(L\)).
1. Regularity
What do we mean by “regularity properties” of sets of reals?
What do we mean by “regularity properties” of sets of reals?

Example 1. Lebesgue measure.
What do we mean by “regularity properties” of sets of reals?

Example 1. Lebesgue measure.
- For $q < q' \in \mathbb{Q}$, $\mu([q, q']) := q' - q$.

Naturally extend to Borel subsets of \mathbb{R}. A $\subseteq \mathbb{R}$ is Lebesgue-null if $\exists B$ Borel with $A \subseteq B$ and $\mu(B) = 0$. A is Lebesgue-measurable if $\exists B$ Borel such that $(A \setminus B) \cup (B \setminus A)$ is Lebesgue-null. Captures the intuition of “size” or “volume” of a set of reals (“object in space”). Can naturally be extended to \mathbb{R}^n.

Yuri Khomskii (University of Amsterdam)
What do we mean by “regularity properties” of sets of reals?

Example 1. Lebesgue measure.

- For $q < q' \in \mathbb{Q}$, $\mu([q, q']) := q' - q$.
- Naturally extend to Borel subsets of \mathbb{R}.
What do we mean by “regularity properties” of sets of reals?

Example 1. Lebesgue measure.

- For $q < q' \in \mathbb{Q}$, $\mu([q, q']) := q' - q$.
- Naturally extend to Borel subsets of \mathbb{R}.
- $A \subseteq \mathbb{R}$ is Lebesgue-null if $\exists B$ Borel with $A \subseteq B$ and $\mu(B) = 0$.

Captures the intuition of “size” or “volume” of a set of reals (“object in space”). Can naturally be extended to \mathbb{R}^n.

Yurii Khomskii (University of Amsterdam)
What do we mean by “regularity properties” of sets of reals?

Example 1. Lebesgue measure.

- For $q < q' \in \mathbb{Q}$, $\mu([q, q']) := q' - q$.
- Naturally extend to Borel subsets of \mathbb{R}.
- $A \subseteq \mathbb{R}$ is Lebesgue-null if $\exists B$ Borel with $A \subseteq B$ and $\mu(B) = 0$.
- A is Lebesgue-measurable if $\exists B$ Borel such that $(A \setminus B) \cup (B \setminus A)$ is Lebesgue-null.
What do we mean by “regularity properties” of sets of reals?

Example 1. Lebesgue measure.

- For $q < q' \in \mathbb{Q}$, $\mu([q, q']) := q' - q$.
- Naturally extend to Borel subsets of \mathbb{R}.
- $A \subseteq \mathbb{R}$ is **Lebesgue-null** if $\exists B$ Borel with $A \subseteq B$ and $\mu(B) = 0$.
- A is **Lebesgue-measurable** if $\exists B$ Borel such that $(A \setminus B) \cup (B \setminus A)$ is Lebesgue-null.

Captures the intuition of “size” or “volume” of a set of reals (“object in space”).

Can naturally be extended to \mathbb{R}^n.
However, there are non-Lebesgue-measurable sets (Vitali, 1905).
However, there are non-Lebesgue-measurable sets (Vitali, 1905).

Proof.

If A is Lebesgue-measurable then there exists a perfect set P with $\mu(P) > 0$ s.t. $P \subseteq A$ or $P \cap A = \emptyset$. Use Axiom of Choice to diagonalize against perfect sets.
However, there are non-Lebesgue-measurable sets (Vitali, 1905).

Proof.
If A is Lebesgue-measurable then there exists a perfect set P with $\mu(P) > 0$ s.t. $P \subseteq A$ or $P \cap A = \emptyset$. Use Axiom of Choice to diagonalize against perfect sets.

Another proof.
Let U be an ultrafilter on ω. Identify $\mathcal{P}(\omega)$ with 2^ω, then U is non-Lebesgue-measurable.
However, there are non-Lebesgue-measurable sets (Vitali, 1905).

Proof.

If A is Lebesgue-measurable then there exists a perfect set P with $\mu(P) > 0$ s.t. $P \subseteq A$ or $P \cap A = \emptyset$. Use Axiom of Choice to diagonalize against perfect sets.

Another proof.

Let U be an ultrafilter on ω. Identify $\mathcal{P}(\omega)$ with 2^{ω}, then U is non-Lebesgue-measurable.

Problematic consequences for spatial reasoning, e.g., Banach-Tarski paradox.
Other examples

- $A \subseteq \mathbb{R}$ has the **Baire property** if $\exists B$ Borel such that $(A \setminus B) \cup (B \setminus A)$ is meager.
Other examples

- $A \subseteq \mathbb{R}$ has the **Baire property** if $\exists B$ Borel such that $(A \setminus B) \cup (B \setminus A)$ is meager.

- $A \subseteq \mathbb{R}$ is **Marczewski-measurable** if for every perfect set P there is a perfect subset $Q \subseteq P$ such that $Q \subseteq A$ or $Q \cap A = \emptyset$.

Ramsey property, doughnut property, perfect set property, K_σ-regularity, In each case, we can find counterexamples. But...
Other examples

- $A \subseteq \mathbb{R}$ has the **Baire property** if $\exists B$ Borel such that $(A \setminus B) \cup (B \setminus A)$ is meager.

- $A \subseteq \mathbb{R}$ is **Marczewski-measurable** if for every perfect set P there is a perfect subset $Q \subseteq P$ such that $Q \subseteq A$ or $Q \cap A = \emptyset$.

Other examples

- $A \subseteq \mathbb{R}$ has the **Baire property** if $\exists B$ Borel such that $(A \setminus B) \cup (B \setminus A)$ is meager.

- $A \subseteq \mathbb{R}$ is **Marczewski-measurable** if for every perfect set P there is a perfect subset $Q \subseteq P$ such that $Q \subseteq A$ or $Q \cap A = \emptyset$.

In each case, we can find counterexamples.
Other examples

- $A \subseteq \mathbb{R}$ has the **Baire property** if $\exists B$ Borel such that $(A \setminus B) \cup (B \setminus A)$ is meager.

- $A \subseteq \mathbb{R}$ is **Marczewski-measurable** if for every perfect set P there is a perfect subset $Q \subseteq P$ such that $Q \subseteq A$ or $Q \cap A = \emptyset$.

In each case, we can find counterexamples. But . . .
Other examples

- $A \subseteq \mathbb{R}$ has the **Baire property** if $\exists B$ Borel such that $(A \setminus B) \cup (B \setminus A)$ is meager.

- $A \subseteq \mathbb{R}$ is **Marczewski-measurable** if for every perfect set P there is a perfect subset $Q \subseteq P$ such that $Q \subseteq A$ or $Q \cap A = \emptyset$.

In each case, we can find counterexamples. But... typical construction involves induction along a *well-ordering of the continuum* (Axiom of Choice).
Other examples

- $A \subseteq \mathbb{R}$ has the **Baire property** if $\exists B$ Borel such that $(A \setminus B) \cup (B \setminus A)$ is meager.

- $A \subseteq \mathbb{R}$ is **Marczewski-measurable** if for every perfect set P there is a perfect subset $Q \subseteq P$ such that $Q \subseteq A$ or $Q \cap A = \emptyset$.

- **Ramsey property, doughnut property, perfect set property, K_σ-regularity,**

In each case, we can find counterexamples. But... typical construction involves induction along a *well-ordering of the continuum* (Axiom of Choice).

Question

Can we find an explicit example of a non-regular set? (and what does that even mean?)
2. Definability
Descriptive set theory: not just about sets, but about their *descriptions* or *definitions*.
Definability

Descriptive set theory

Descriptive set theory: not just about sets, but about their *descriptions* or *definitions*.

Focus on second-order number theory (\mathbb{N}^2):

- Variables range over natural numbers or real numbers.
- Natural number quantifiers: $\exists^0 \forall^0$,
- Real number quantifiers: $\exists^1 \forall^1$.
Descriptive set theory

Descriptive set theory: not just about sets, but about their *descriptions* or *definitions*.

Focus on second-order number theory (\mathbb{N}^2):

- Variables range over natural numbers or real numbers.
- Natural number quantifiers: $\exists^0 \forall^0$,
- Real number quantifiers: $\exists^1 \forall^1$.

Complexity of \mathbb{N}^2-formulas: $\Sigma^0_n, \Pi^0_n, \ldots, \Sigma^1_n, \Pi^1_n, \ldots$.
Complexity of sets

Complexity of a set of reals measured by complexity of defining \mathbb{N}^2-formula.

$$A = \{ x \in \mathbb{R} \mid \mathbb{N}^2 \models \phi(x, a) \}$$

Note that we allow a fixed real parameter $a \in \mathbb{R}$ in the definition.
Complexity of sets

Complexity of a set of reals measured by complexity of defining \mathbb{N}^2-formula.

$$A = \{ x \in \mathbb{R} \mid \mathbb{N}^2 \models \phi(x, a) \}$$

Note that we allow a fixed real parameter $a \in \mathbb{R}$ in the definition.

Definition

We say “A has complexity $\Sigma_n^i (\Pi_n^i)$” iff ϕ has complexity $\Sigma_n^i (\Pi_n^i)$.
Complexity of sets

Complexity of a set of reals measured by complexity of defining \mathbb{N}^2-formula.

$$A = \{ x \in \mathbb{R} \mid \mathbb{N}^2 \models \phi(x, a) \}$$

Note that we allow a fixed real parameter $a \in \mathbb{R}$ in the definition.

Definition

We say “A has complexity $\Sigma^i_n (\Pi^i_n)$” iff ϕ has complexity $\Sigma^i_n (\Pi^i_n)$.

Relation with topology:

- $\Sigma^0_1 = \text{open}$,
- $\Pi^0_1 = \text{closed}$,
- $\Delta^1_1 = \text{Borel}$,
- $\Sigma^1_1 = \text{analytic}$ (continuous image of Borel).
Hierarchy

(open) Σ^0_1 \subseteq Σ^0_2 \subseteq Σ^1_0 \subseteq Σ^1_1 \subseteq Σ^1_2 \subseteq Δ^0_2 \subseteq Δ^0_1 \subseteq Δ^1_0 \subseteq Δ^1_1 \subseteq Δ^1_2 \subseteq Π^0_1 \subseteq Π^0_2 \subseteq Π^1_0 \subseteq Π^1_1 \subseteq Π^1_2 \subseteq Σ^0_1 \subseteq Σ^0_2 \subseteq Σ^1_0 \subseteq Σ^1_1 \subseteq Σ^1_2 \subseteq (Borel) Σ^1_1 \subseteq Σ^1_2 \subseteq (analytic) Σ^1_1 \subseteq Σ^1_2 \subseteq (closed) Π^1_1 \subseteq Π^1_2 \subseteq (co-analytic) Π^1_1 \subseteq Π^1_2

All Σ^1_1 sets are regular.

For many properties, also all Π^1_1 sets are regular.

Irregular sets (produced by AC) may lie far outside this hierarchy.

So “paradoxes” cannot occur if we restrict attention to analytic/co-analytic sets.
All Σ^1_1 sets are regular.
Hierarchy

- All Σ^1_1 sets are regular.
- For many properties, also all Π^1_1 sets are regular.
All Σ^1_1 sets are regular.

For many properties, also all Π^1_1 sets are regular.

Irregular sets (produced by AC) may lie far outside this hierarchy.
All Σ^1_1 sets are regular.

For many properties, also all Π^1_1 sets are regular.

Irregular sets (produced by AC) may lie far outside this hierarchy.

So “paradoxes” cannot occur if we restrict attention to analytic/co-analytic sets.
So on which level do things go wrong?
Second level

So on which level do things go wrong?

Question: Does the assertion “all Σ^1_2 sets are regular” hold?
Second level

So on which level do things go wrong?

Question: Does the assertion “all Σ_2^1 sets are regular” hold?

Answer: It is independent of ZFC!
3. Independence results
Constructible universe and extensions

$L = \text{Gödel’s constructible universe.}$
Independence results

Constructible universe and extensions

$L = \text{Gödel's constructible universe.}$

- There is a Σ^1_2-definable well-ordering of the continuum.

Forcing over L.

By forcing we can add new reals, destroy Σ^1_2 well-ordering. Does irregularity disappear?

If we add "many" reals, yes.

If we add "not so many" reals, perhaps not.

In fact, we can say exactly which reals must be added to obtain regularity on Σ^1_2 level.
Constructible universe and extensions

\[L = \text{G"odel's constructible universe}. \]

- There is a \(\Sigma_2^1 \)-definable well-ordering of the continuum.
- Therefore irregularity exists on the \(\Sigma_2^1 \) (even \(\Delta_2^1 \)) level.

Forcing over \(L \).

By forcing we can add new reals, destroy \(\Sigma_2^1 \)-well-ordering. Does irregularity disappear?

If we add "many" reals, yes.

If we add "not so many" reals, perhaps not.

In fact, we can say exactly which reals must be added to obtain regularity on \(\Sigma_2^1 / \Delta_2^1 \) level.
Constuctible universe and extensions

\[\mathbb{L} = \text{Gödel’s constructible universe.} \]

- There is a \(\Sigma_2^1 \)-definable well-ordering of the continuum.
- Therefore irregularity exists on the \(\Sigma_2^1 \) (even \(\Delta_2^1 \)) level.

Forcing over \(\mathbb{L} \).

- By forcing we can add new reals, destroy \(\Sigma_2^1 \) well-ordering. Does irregularity disappear?
Constructible universe and extensions

$L = \text{Gödel's constructible universe.}$

- There is a Σ^1_2-definable well-ordering of the continuum.
- Therefore irregularity exists on the Σ^1_2 (even Δ^1_2) level.

Forcing over L.

- By forcing we can add new reals, destroy Σ^1_2 well-ordering. Does irregularity disappear?
 - If we add “many” reals, yes.
 - If we add “not so many” reals, perhaps not.
Independence results

Constructible universe and extensions

$\mathbb{L} = \text{Gödel’s constructible universe.}$
- There is a Σ^1_2-definable well-ordering of the continuum.
- Therefore irregularity exists on the Σ^1_2 (even Δ^1_2) level.

Forcing over \mathbb{L}.
- By forcing we can add new reals, destroy Σ^1_2 well-ordering. Does irregularity disappear?
 - If we add “many” reals, yes.
 - If we add “not so many” reals, perhaps not.
- In fact, we can say exactly which reals must be added to obtain regularity on Σ^1_2/Δ^1_2 level.
Independence results

Solovay-Judah-Shelah characterizations

Theorem (Judah-Shelah 1989)

The following are equivalent:

1. All Δ^1_2 sets are Lebesgue-measurable,
2. For all $a \in \mathbb{R}$ there is a random-generic real over $L[a]$.

Theorem (Solovay 1969)

The following are equivalent:

1. All Σ^1_2 sets are Lebesgue-measurable,
2. For all $a \in \mathbb{R}$, "almost all" reals are random-generic over $L[a]$.

Solovay-Judah-Shelah characterizations

Theorem (Judah-Shelah 1989)

The following are equivalent:

1. All Δ^1_2 sets are Lebesgue-measurable,
2. For all $a \in \mathbb{R}$ there is a random-generic real over $L[a]$.

Theorem (Solovay 1969)

The following are equivalent:

1. All Σ^1_2 sets are Lebesgue-measurable,
2. For all $a \in \mathbb{R}$, “almost all” reals are random-generic over $L[a]$.
Solovay-Judah-Shelah characterizations

Theorem (Judah-Shelah 1989)
The following are equivalent:
1. All Δ^1_2 sets have the Baire property,
2. For all $a \in \mathbb{R}$ there is a Cohen-generic real over $L[a]$.

Theorem (Solovay 1969)
The following are equivalent:
1. All Σ^1_2 sets have the Baire property,
2. For all $a \in \mathbb{R}$, “almost all” reals are Cohen-generic over $L[a]$.
Iterated forcing extensions

Statements “all $\Sigma^1_2 (\Delta^1_2)$ sets are regular” correspond to “transcendence over L”.

Example 1. Random forcing adds random-generic reals but not Cohen-generic reals. Therefore, if we iterate random forcing for \aleph_1 steps, we get a model where all Δ^1_2 sets are Lebesgue measurable, but not all Δ^1_2 sets have the Baire property.

Example 2. Cohen forcing adds Cohen-generic reals but not random-generic reals. Therefore, if we iterate Cohen forcing (for \aleph_1 steps), we get a model where all Δ^1_2 sets have the Baire property but not all Δ^1_2 sets are Lebesgue measurable.
Iterated forcing extensions

Statements “all Σ^1_2 (Δ^1_2) sets are regular” correspond to “transcendence over L”.

Since transcendence over L can (to some extent) be controlled by forcing, so can regularity.

Example 1. Random forcing adds random-generic reals but not Cohen-generic reals. Therefore, if we iterate random forcing for \aleph_1 steps, we get a model where all Δ^1_2 sets are Lebesgue measurable, but not all Δ^1_2 sets have the Baire property.

Example 2. Cohen forcing adds Cohen-generic reals but not random-generic reals. Therefore, if we iterate Cohen forcing (for \aleph_1 steps), we get a model where all Δ^1_2 sets have the Baire property but not all Δ^1_2 sets are Lebesgue measurable.
Iterated forcing extensions

Statements “all \(\Sigma^1_2 \) \((\Delta^1_2)\) sets are regular” correspond to “transcendence over \(L \)”.

Since transcendence over \(L \) can (to some extend) be controlled by forcing, so can regularity.

Example 1. Random forcing adds random-generic reals but not Cohen-generic reals.
Iterated forcing extensions

Statements “all Σ^1_2 (Δ^1_2) sets are regular” correspond to “transcendence over L”.

Since transcendence over L can (to some extent) be controlled by forcing, so can regularity.

Example 1. Random forcing adds random-generic reals but not Cohen-generic reals. Therefore, if we iterate random forcing for \aleph_1 steps, we get a model where all Δ^1_2 sets are Lebesgue measurable, but not all Δ^1_2 sets have the Baire property.
Iterated forcing extensions

Statements “all Σ^1_2 (Δ^1_2) sets are regular” correspond to “transcendence over L”.

Since transcendence over L can (to some extend) be controlled by forcing, so can regularity.

Example 1. Random forcing adds random-generic reals but not Cohen-generic reals. Therefore, if we iterate random forcing for \aleph_1 steps, we get a model where all Δ^1_2 sets are Lebesgue measurable, but not all Δ^1_2 sets have the Baire property.

Example 2. Cohen forcing adds Cohen-generic reals but not random-generic reals. Therefore, if we iterate Cohen forcing (for \aleph_1 steps), we get a model where all Δ^1_2 sets have the Baire property but not all Δ^1_2 sets are Lebesgue measurable.
Strength of measurability

On the other hand, some properties are stronger than others:

Theorem (Bartoszyński-Raisonnier-Stern 1984/1985)

If all Σ^1_2 sets are Lebesgue measurable then all Σ^1_2 sets have the Baire property.
Strength of measurability

On the other hand, some properties are stronger than others:

Theorem (Bartoszyński-Raisonnier-Stern 1984/1985)

If all Σ^1_2 sets are Lebesgue measurable then all Σ^1_2 sets have the Baire property.

Measurability statements have various “strength”, corresponding to strength of transcendence statements.
Strength of measurability

On the other hand, some properties are stronger than others:

Theorem (Bartoszyński-Raisonnier-Stern 1984/1985)

If all Σ^1_2 sets are Lebesgue measurable then all Σ^1_2 sets have the Baire property.

Measurability statements have various “strength”, corresponding to strength of transcendence statements.

\[
\begin{array}{c}
\Sigma^1_2(\text{Lebesgue}) \\
\Downarrow \\
\Sigma^1_2(\text{Baire}) \\
\Downarrow \\
\Delta^1_2(\text{Baire}) \\
\end{array}
\]

\[
\begin{array}{c}
\Sigma^1_2(\text{Baire}) \\
\Downarrow \\
\Delta^1_2(\text{Baire}) \\
\Downarrow \\
\Delta^1_2(\text{Baire}) \\
\end{array}
\]
Independence results

Strongest statement

\[\forall a \left(V_{1}[a] = \mathbb{N}_0 \right) \iff \Sigma_2^1(\mathbb{E}) = \Sigma_2^1(\mathbb{D}) \]

\[\Sigma_2^1(\mathbb{R}) = \Delta_2^1(\mathbb{R}) \]
\[\Sigma_2^1(\mathbb{C}) = \Delta_2^1(\mathbb{D}) \]
\[\Delta_2^1(\mathbb{E}) \]
\[\Delta_2^1(\mathbb{B}) \]
\[\Sigma_2^1(\mathbb{L}) = \Delta_2^1(\mathbb{L}) \]
\[\Sigma_2^1(\mathbb{V}) \]
\[\Sigma_2^1(\mathbb{M}) = \Delta_2^1(\mathbb{M}) \]
\[\Delta_2^1(\mathbb{V}) \]
\[\forall a \left(\mathbb{R} \cap L[a] \neq \mathbb{R} \right) \iff \Sigma_2^1(\mathbb{S}) = \Delta_2^1(\mathbb{S}) \]

Weakest statement

\[\Sigma_2^1(\mathbb{E}) = \Delta_2^1(\mathbb{A}) \]

Brendle & Löwe, *Eventually different functions and inaccessible cardinals.*
Brendle & Khomskii, *Polarized partitions on the second level of the projective hierarchy.*

Yuri Khomskii (University of Amsterdam)
Regularity and definability
PhDs in Logic III
Typical questions in this field:
Questions

Typical questions in this field:

1. Given a regularity property, characterize it by transcendence property.

2. Given a transcendence property, characterize it by regularity.

3. Find general Solovay-Judah-Shelah-style theorems (some work done by Daisuke Ikegami; still many open questions).

4. Prove implications from Σ^1_2/Δ^1_2 (Reg$_1$) to Σ^1_2/Δ^1_2 (Reg$_2$), or produce a model which separates Reg$_1$ from Reg$_2$.

5. For some properties, whether it holds on the Σ^1_1 or even Borel level is still open (e.g., does there exist a Borel maximal family of eventually different functions?)
Typical questions in this field:

1. Given a regularity property, characterize it by transcendence property.
2. Given a transcendence property, characterize it by regularity.
Questions

Typical questions in this field:

1. Given a regularity property, characterize it by transcendence property.
2. Given a transcendence property, characterize it by regularity.
3. Find general Solovay-Judah-Shelah-style theorems (some work done by Daisuke Ikegami; still many open questions).
Independence results

Questions

Typical questions in this field:

1. Given a regularity property, characterize it by transcendence property.
2. Given a transcendence property, characterize it by regularity.
3. Find general Solovay-Judah-Shelah-style theorems (some work done by Daisuke Ikegami; still many open questions).
4. Prove implications from $\Sigma^1_2/\Delta^1_2(\text{Reg}_1)$ to $\Sigma^1_2/\Delta^1_2(\text{Reg}_2)$, or produce a model which separates Reg_1 from Reg_2.
Questions

Typical questions in this field:

1. Given a **regularity property**, characterize it by transcendence property.
2. Given a **transcendence** property, characterize it by **regularity**.
3. Find general Solovay-Judah-Shelah-style theorems (some work done by Daisuke Ikegami; still many open questions).
4. Prove implications from $\Sigma^1_2/\Delta^1_2(\text{Reg}_1)$ to $\Sigma^1_2/\Delta^1_2(\text{Reg}_2)$, or produce a model which separates Reg_1 from Reg_2.
5. For some properties, whether it holds on the Σ^1_1 or even Borel level is still open (e.g., does there exist a Borel maximal family of eventually different functions?)
Thank you!

Yurii Khomskii

yurii@deds.nl