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Regularity Properties and Definability

1. Regularity Properties: purely mathematical issues (geometry, topology. . . )

2. Definability: what does logic have to do with it?

3. Gödel, Solovay, Shelah: . . . getting technical. . .
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Regularity Properties

1. Regularity Properties
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Regularity Properties

The setting

The real number continuum: R, Rn (alternatively: P(ω), ωω, 2ω, . . . ).

Best tool for modelling our physical reality.

Subsets of the continuum ≈ “objects in space”.
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Regularity Properties

Examples

A = {(x , y) ∈ R2 | x2 + y2 ≤ r2}
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Regularity Properties

Examples

A = {(x , y) ∈ R2 | 0 ≤ x ≤ a, 0 ≤ y ≤ b}
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Regularity Properties

Examples

A = {(x , y) ∈ R2 | a ≤ x ≤ b, 0 ≤ y ≤ f (x)}

Notice that from a set-theoretic point of view, all of the above “objects”
are subsets of the continuuum (in this case, A ⊆ R2).
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Regularity Properties

Counter-intuitive objects

As methods of 19th century mathematics became more advanced,
mathematicians stated constructing increasingly counter-intuitive objects
(sets).

For example:

function f (x) :=

{
1 if x ∈ Q
0 if x /∈ Q

sets of fixed points (no constructions available),

sets defined by enumerating all the real numbers (Axiom of Choice)
and using induction on α < 2ℵ0 ,

etc.

Regularity properties: isolated specifically to avoid such counter-intuitive
constructions.
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Regularity Properties

Lebesgue measure

Motivating example: Lebesgue measure.

Is it possible to define a function µ : P(Rn)→ [0,∞) measuring the “size”
or “volume” of a set A ⊆ Rn?

For example:

µ(A) = π · r2 µ(A) = a · b µ(A) =

∫ b

a

f (x)dx
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Regularity Properties

Lebesgue measure (2)

Henri Lebesgue, in his PhD thesis from 1902, defined a precise way of
measuring the “size” or “volume” of subsets A ⊆ Rn (needed for the
definition of the Lebesgue integral).

Theorem (Vitali, 1905)

(AC) There is a non-Lebesgue measurable set.

Easy modern proof.

Let U be an ultrafiler on ω. Identify P(ω) with 2ω, then U is
non-Lebesgue-measurable as a subset of 2ω (easy to translate to R or Rn).
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Regularity Properties

This is a problem...

Highly problematic consequences for spatial reasoning, e.g., Banach-Tarski
paradox.

“You can take a sphere, cut it up
into five pieces, rearrange the pieces
using only the operations of rota-
tion and translation (no stretching!),
and assemble them back to form two
spheres of the same size as the origi-
nal!”

Impossible? Mathematically possible, but the pieces are not
Lebesgue-measurable (so our spatial intuition does not apply).
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Regularity Properties

What to do . . .

Possible approaches to the “paradox”:

1 Throw out the Axiom of Choice (approach of some early 20th century
mathematicians).

2 Accept the existence of “weird” sets (modern approach). Do they
really bother?

Can one find an explicit example of a non-measurable set?

And what does that even mean?
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Regularity Properties

Other properties

Other examples of regularity properties:

Property of Baire: A is “almost” equal to an open set (topology).

Perfect Set Property: A is either countable or contains a perfect set
(Cantor).

Ramsey property (infinitary combinatorics),

Kσ-regularity (set theory, analysis),

Marczewski-measurability,

Many many more . . .

In each case, something similar happens: one can produce
counterexamples using the Axiom of Choice.

But can one find an explicit example of a non-regular set?

And what does that even mean?
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Definability

2. Definability
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Definability

Defining sets

Let A be a subset of R (or Rn). Can A be defined by a formula, in the
sense that

A = {x ∈ R | φ(x)}?

Focus on second-order number theory (N2):

Variables range over natural numbers or real numbers.

Natural number quantifiers: ∃0 ∀0.

Real number quantifiers: ∃1 ∀1.

Complexity of N2-formulas: Σ0
n,Π

0
n, . . . ,Σ

1
n,Π

1
n, . . . (number of alternating

quantifiers).
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Definability

Defining sets (2)

The complexity of a subset of the continuum can be measured by the
complexity of its defining N2-formula.

Definition

If a set A can be written as A = {x ∈ R | N2 |= φ(x , a)}, then we say that
A has complexity Σi

n (Πi
n) iff φ has complexity Σi

n (Πi
n).

Note that we allow a fixed real parameter a ∈ R in the definition of A.

Definition

A set A is projective if it is Σ1
n or Π1

n for some n.
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Definability

Projective hierarchy

(open) (analytic)

Σ0
1 Σ0

2 Σ1
1 Σ1

2⊆ ⊆ ⊆ (Borel) ⊆ ⊆ ⊆ ⊆
∆0

2 . . . ∆1
1 ∆1

2 . . .

⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆
Π0

1 Π0
2 Π1

1 Π1
2

(closed) (co-analytic)

Connection with topology:

Σ0
1 = open,

Π0
1 = closed,

∆1
1 = Borel,

Σ1
1 = analytic (continuous image of Borel),

Π1
1 = co-analytic (complement of analytic).
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Definability

Analytic sets

Many naturally occurring sets are analytic (Σ1
1).

Theorem (Suslin, 1917)

All analytic sets are Lebesgue-measurable, satisfy the Property of Baire
and the Perfect Set Property.

The same holds for all other (reasonable) regularity properties!
(proofs scattered throughout 20th century).
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Definability

Back to the hierarchy . . .

(open) (analytic)

Σ0
1 Σ0

2 Σ1
1 Σ1

2⊆ ⊆ ⊆ (Borel) ⊆ ⊆ ⊆ ⊆
∆0

2 . . . ∆1
1 ∆1

2 . . .

⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆
Π0

1 Π0
2 Π1

1 Π1
2

(closed) (co-analytic)

OK!

No “weird things” or “paradoxes” can occur if we restrict attention to
analytic sets.
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Definability

Philosophical Intermezzo

Why?

Why is there a connection between purely mathematical properties of
objects (such as having a well-defined notion of size/volume), and their
logical description (which seems to be a human invention)?

1 The world is inherently ‘logical’ in nature. Logically simpler objects
are somehow ‘nicer’ in reality.

2 The concepts which humans devised to describe/model the world, are
(subconsciously) based on some kind of language, and therefore are of
limited logical complexity and/or are somehow related to logic.
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Definability

What next?

(open) (analytic)

Σ0
1 Σ0

2 Σ1
1 Σ1

2⊆ ⊆ ⊆ (Borel) ⊆ ⊆ ⊆ ⊆
∆0

2 . . . ∆1
1 ∆1

2 . . .

⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆
Π0

1 Π0
2 Π1

1 Π1
2

(closed) (co-analytic)

OK!

?

Are all projective sets regular?

Many mathematicians worked on this problem in the early 20th century
but were unable to solve it.
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Definability

What next?

“Les efforts que j’ai faits pour résoudre cette question m’ont conduit à ce résultat tout

inattendu: il existe une famille . . . d’ensembles effectifs telle qu’on ne sait pas et l’on ne

saura jamais si un ensemble quelconque de cette famille (supposé non dénombrable) a la

puissance du continu, s’il est ou non de troisième catégorie, ni même s’il est mesurable

. . . c’est la famille des ensebles projectifs de M. H. Lebesuge. Il ne reste donc qu’à

reconnâıtre la nature de ce fait nouveau.” [Luzin, 1925]

“The efforts that I exerted on the resolution of this question led me to the following

totally unexpected discovery: there exists a family . . . consisting of effective [definable]

sets, such that one does not know and one will never know whether every set from this

family, if uncountable, has the cardinality of the continuum, nor whether it is of the

third category, nor whether it is measurable. . . . This is the family of the projective sets

of Mr. H. Lebesgue. It remains but to recognize the nature of this new development.”
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Gödel, Solovay, Shelah

3. Gödel, Solovay, Shelah
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Gödel, Solovay, Shelah

Constructible universe

Gödel’s constructible universe:

L0 := ∅
Lα+1 := Def(Lα)

Lλ :=
⋃
α<λ Lα (for limit ordinals λ).

L :=
⋃
α∈Ord Lα

L is a so-called inner model of set theory: it satisfies all axioms of ZFC,
plus additional axioms (e.g., GCH). The “real universe” V could be L, or
it could be larger than L. The statement “V = L” is the axiom of
constructibiliy.
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Gödel, Solovay, Shelah

Well-ordering the reals in L

Fact (Gödel, 1938): in L, there is a Σ1
2 well-ordering <L of R.

Even more: there is a Σ1
2-good well-ordering of R, meaning that the

relation Φ(x , y) defined by

y encodes the set of <L-predecessors of x

is Σ1
2. Using this well-ordering, one can produce counter-examples to most

regularity properties on the Σ1
2 (and sometimes the Π1

1) level in L.

Theorem (Gödel, 1938)

One cannot prove in ZFC that all Σ1
2 sets are Lebesgue measurable or

have the Property of Baire. One cannot prove in ZFC that all Π1
1 sets

satisfy the Perfect Set Property.
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Gödel, Solovay, Shelah

Well-ordering the reals in L
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Gödel, Solovay, Shelah

Forcing

In 1964, Paul Cohen developed the method of forcing:

M: a model of ZFC.

P: forcing partial order in M.

In a specific way, from P one derives a so-called generic object G ,
which lies outside the model M.

M[G ]: least model of ZFC extending M and containing G .

Using technical properties of P, we have some control over the
additional axioms that hold in M[G ].
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Gödel, Solovay, Shelah

Solovay’s result

Theorem (Solovay, 1970)

There is a forcing extension L[G ] of L in
which all Σ1

2 sets are Lebesgue measurable
and satisfy the Property of Baire.

Corollary: the measurability (and PoB) of all Σ1
2 sets is independent of

ZFC.
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Gödel, Solovay, Shelah

Other results of Solovay

Theorem (Solovay, 1970)

If M is a model of ZFC+“there exists an inaccessible cardinal”, then there
is a forcing extension M[G ] of M in which all projective sets are Lebesgue
measurable, satisfy the Property of Baire and the Perfect Set Property.

Corollary: the measurability (and PoB and PSP) of all projective sets is
independent of ZFC (plus inaccessible).
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Gödel, Solovay, Shelah

Even more results of Solovay

Theorem (Solovay, 1970)

Let M and M[G ] be as before. In M[G ], there is an inner model which
satisfies ZF but not AC, and in which all sets are measurable, satisfy the
Property of Baire and the Perfect Set Property.

Corollary: the existence of non-measurable (non-PoB, non-PSP) sets
cannot be proved without the Axiom of Choice!
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Gödel, Solovay, Shelah

Measurability and size of the universe

Recall:

L is the smallest inner model. V = L is a statement about the
minimality of the universe.

Using forcing, we can add generic object G to L, producing a larger
universe V = L[G ].

One particular forcing: random forcing (due to [Solovay, 1970]).
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Gödel, Solovay, Shelah

Measurability and size of the universe

Theorem (Judah-Shelah, 1989)

The following are equivalent:

1 all ∆1
2 sets are Lebesgue-measurable,

2 for all r ∈ R there is a random-generic real over L[r ].

Theorem (Solovay, 1970)

The following are equivalent:

1 all Σ1
2 sets are Lebesgue-measurable,

2 for all r ∈ R, “almost all” reals are random-generic over L[r ]
(where “almost all” means “except for a set of measure 0”).

In both cases, point 2 asserts “transcendence over L” (i.e., in which way
the actual universe is larger than the minimal one).
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Gödel, Solovay, Shelah

Other properties

Given a regularity property, one hopes to find an equivalence theorem
like the one above, but for different notions of “transcendence over
L”.

Various results proved by Judah, Shelah, Brendle, Löwe, Halbeisen,
Ikegami.

Transcendence can have different “strength”, e.g.:

“all Σ1
2 sets are Marczewski-measurable” is equivalent to

“∀r ∈ R (R ∩ L[r ] 6= R)”,

“all Π1
1 sets satisfy the Perfect Set Property” is equivalen to

“∀r ∈ R (|R ∩ L[r ]| = ℵ0)”.
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Gödel, Solovay, Shelah

Brendle & Löwe, Eventually different functions and inaccessible cardinals.
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Gödel, Solovay, Shelah

Σ1
2(Ramsey)
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Gödel, Solovay, Shelah

My work

I promised to say something about my own work.....

1 Abstraction of the above, set in the framework of Idealized Forcing
(Zapletal); based on work of D. Ikegami.

2 Polarized partitions: variation of classical Ramsey property, recently
studied by Todorcevic, DiPrisco, Zapletal (diagram on previous page).

3 Hausdorff gaps: objects introduced in 1930s, by Felix Hausdorff.
Some results:

“there are no Π1
1 Hausdorff gaps” is equivalent to “∀r ∈ R (|R∩L[r ]| = ℵ0)”

(strongest possible transcendence statement).

without assuming AC, one cannot construct Hausdorff gaps.

4 Maximal almost disjoint (m.a.d.) families.
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Thank you!
yurii@deds.nl
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