
Cichoń’s Diagram and Regularity Properties

Yurii Khomskii
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Cichoń’s diagram

“What pentagram is to heavy metal, Cichoń’s diagam is to set theory.”

— Jinďrich Zapletal

cov(N ) // non(M) // cof(M) // cof(N ) // 2ℵ0

b //

OO

d

OO

ℵ1
// add(N ) //

OO

add(M)

OO

// cov(M)

OO

// non(N )

OO

1 Each inequality appearing in the diagram is provable in ZFC.

2 Each inequality not appearing in the diagram is not provable in ZFC, except

3 add(M) = min(b, cov(M)) and cof(M) = max(d,non(M)).
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Regularity properties

Let A be a set of reals (ωω or 2ω).

A has the Baire property iff for every basic open [s] there is a basic
open [t] ⊆ [s] such that [t] ⊆∗ A or [t] ∩ A =∗ ∅.

(⊆∗ and =∗ means modulo meager)

A is Lebesgue-measurable iff for every closed set C of positive
measure there is a closed subset C ′ ⊆ C of positive measure, such
that C ⊆ A or C ∩ A = ∅.

Baire property = Cohen forcing

Lebesgue measure = random forcing
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More forcing

Sacks forcing S: perfect trees on 2<ω ordered by inclusion.

Set theorists get born and die, move to distant countries, get married, bear children, go

bankrupt, grow old and sick, and Sacks forcing is still with us, working just as well as

the day Sacks invented it.

— Jinďrich Zapletal
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Even more forcing

Miller forcing M: super-perfect trees on ω<ω ordered by inclusion.

(A tree is super-perfect if every node has an extensions which is infinitely splitting).

Laver forcing L: Laver trees on ω<ω ordered by inclusion.

(A tree is Laver if every node beyond the stem is infinitely splitting).
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More Regularity Properties

Definition

A ⊆ 2ω is Sacks-measurable (Marczewski-measurable) iff

∀T ∈ S ∃S ≤ T ([S ] ⊆ A or [S ] ∩ A = ∅).

A ⊆ ωω is Miller-measurable iff

∀T ∈M ∃S ≤ T ([S ] ⊆ A or [S ] ∩ A = ∅).

A ⊆ ωω is Laver-measurable iff

∀T ∈ L ∃S ≤ T ([S ] ⊆ A or [S ] ∩ A = ∅).
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Applications

Baire and Lebesgue properties have many applications (topology, analysis
etc.) The other (Marczewski-style) properties were introduced by Polish
mathematicians in the 1930s, and have several applications in

Forcing theory

topology

infinitary combinatorics

Ramsey theory

etc.

Polish mathematicians were already interested in them in the 1930s.
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Projective sets

Let Γ be a projective pointclass (e.g., Borel, Σ1
1, Projective etc.)

“Γ(P)” abbreviates the statement “all sets of complexity Γ are
P-measurable”.

Σ1
1(P) is true (for all P)

But Σ1
2(P) and ∆1

2(P) are independent of ZFC.
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Cichoń’s diagram for regularity properties

∆1
2(B) +3 Σ1

2(S)
∆1

2(S)

Σ1
2(L)

∆1
2(L)

+3 Σ1
2(M)

∆1
2(M)

4<qqqqqqqq

qqqqqqqq

∀r(ω
L[r ]
1 < ω1) +3 Σ1

2(B) +3

KS

Σ1
2(C)

KS

+3 ∆1
2(C)

KS

1 Each implication appearing in the diagram is provable in ZFC.

2 Each implication not appearing in the diagram is not provable in ZFC,
except

3 ∆1
2(L) + ∆1

2(C) =⇒ Σ1
2(C)
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Characterization (1)

Why the analogy with cardinal invariants?

Theorem (Judah-Shelah 1989)

The following are equivalent:

1 ∆1
2(C)

2 ∀r ∃x (x is Cohen over L[r ]).

Theorem (Solovay 1970)

The following are equivalent:

1 Σ1
2(C)

2 ∀r {x | x Cohen over L[r ]} is comeager.
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Characterization (2)

Why this analogy?

Theorem (Judah-Shelah 1989)

The following are equivalent:

1 ∆1
2(B)

2 ∀r ∃x (x is random over L[r ]).

Theorem (Solovay 1970)

The following are equivalent:

1 Σ1
2(B)

2 ∀r µ({x | x random over L[r ]}) = 1.
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Characterization (3)

Theorem (Brendle-Löwe 1999)

The following are equivalent:
1 ∆1

2(L)
2 Σ1

2(L)
3 ∀r ∃x (x is dominating over L[r ])

The following are equivalent:
1 ∆1

2(M)
2 Σ1

2(M)
3 ∀r ∃x (x is unbounded over L[r ])

The following are equivalent:
1 ∆1

2(S)
2 Σ1

2(S)
3 ∀r ∃x (x /∈ L[r ])
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Correspondence

Regularity hypothesis Transcendence over L[r ]
Cardinal

characteristic

∀r(ω
L[r ]
1 < ω1) “making ground-model reals countable” ℵ1

Σ1
2(B) measure-one many random reals add(N )

∆1
2(B) random reals cov(N )

Σ1
2(C) co-meager many Cohen reals add(M)

∆1
2(C) Cohen reals cov(M)

∆1
2(L) / Σ1

2(L) dominating reals b

∆1
2(M) / Σ1

2(M) unbounded reals d

∆1
2(S) / Σ1

2(S) new reals 2ℵ0
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Cichon’s diagram

∆1
2(B) +3 Σ1

2(S)
∆1

2(S)

Σ1
2(L)

∆1
2(L)

+3 Σ1
2(M)

∆1
2(M)

4<qqqqqqqq

qqqqqqqq

∀r(ω
L[r ]
1 < ω1) +3 Σ1

2(B) +3

KS

Σ1
2(C)

KS

+3 ∆1
2(C)

KS

Analogy between hypotheses about regularity on 2nd level and cardinal
invariants.

Question

What happens at higher levels of the projective hierarchy?
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Some straightforward implications

Note that some of the implications are straightforward.

Fact

Let Γ be any pointclass closed under continuous pre-images. Then:

1 Γ(L)⇒ Γ(M)⇒ Γ(S).

2 Γ(B)⇒ Γ(S).

3 Γ(C)⇒ Γ(M).
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Cichoń’s diagram on the third level

∆1
3(B) +3 ∆1

3(S)

∆1
3(L) +3 ∆1

3(M)

2:nnnnnnnnnnnn

nnnnnnnnnnnn
Σ1

3(S)

KS

Σ1
3(L) +3

KS

Σ1
3(M)

KS 2:nnnnnnnnnnnn

nnnnnnnnnnnn

? +3 Σ1
3(B)

KS

Σ1
3(C) +3

6>uuuuuuuu

uuuuuuuu
∆1

3(C)

]e

Eventually, we would like to “solve” this diagram in ZFC or ZFC +
inaccessible.
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Cohen and Random

Concerning Cohen and Random, some things were known:

Con(∆1
3(C) + ¬∆1

3(B)) from ZFC (Bagaria-Judah 1993)

Con(∆1
3(B) + ¬∆1

3(C)) from ZFC (Bagaria 1993, Bagaria-Woodin
1997).

Con(Proj(B) + ¬∆1
3(C)) from ZFC + Mahlo (Friedman-Schrittesser

2013).
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Solving the diagrams

∆1
3(B) +3 ∆1

3(S)

∆1
3(L) +3 ∆1

3(M)

2:nnnnnn
nnnnnn

Σ1
3(S)

KS

Σ1
3(L) +3

KS

Σ1
3(M)

KS 2:nnnnnnn
nnnnnnn

? +3 Σ1
3(B)

KS

Σ1
3(C) +3

6>uuuu
uuuu

∆1
3(C)

\d

Solving the entire diagram on the 3rd or higher levels still seems difficult.

Question

Are Σ1
3(P) and ∆1

3(P) equivalent for P ∈ {S,L,M}?

But it is easier if we restrict attention exclusively to ∆1
3, Σ1

3 or ∆1
4 sets!
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The Γ-diagram

Γ(B) +3 Γ(S)

Γ(L) +3 Γ(M)

7?vvvvvv
vvvvvv

Γ(C)

KS

We will try to “solve” this diagram for Γ = ∆1
3, Σ1

3 and ∆1
4.

Main difficulty: develop methods to obtain Γ(P) by forcing iterations,
without too much damage.
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Classical results

Classical methods (Solovay, Judah-Shelah) essentially say:

Fact

1 An iteration of length ω1 of P yields ∆1
2(P), and

2 An iteration of length ω1 of “amoeba-for-P” yields Σ1
2(P).
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Suslin+ proper forcing

The point is to squeeze out stronger results using Suslin+ properness of
the forcings involved in the iteration!

Idea: Consider forcings with simple definitions, and replace “M ≺ Hθ”
in the definition of properness by “arbitrary countable transitive model M
of (a sufficient fragment of) ZFC”.

By “simple definitions” we mean that the conditions are (coded by) reals
and

1 Suslin: “p ∈ P”,“p ≤ q” and “p⊥q” are Σ1
1 relations.

2 Suslin+: “p ∈ P” and “p ≤ q” are Σ1
1, and “being pre-dense below a

condition” can, w.l.o.g., be stated in a Σ1
2-way.

All standard definable forcings used in the theory of the reals which are
known to be proper, are actually Suslin+ proper.
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Amoeba and Quasi-amoeba

Definition

Let P be a tree-like forcing notion, and AP another forcing. We say that

1 AP is a quasi-amoeba for P if for every p ∈ P and every AP-generic G , there is a
q ∈ PV [G ] such that V [G ] |= q ≤P p and

V [G ] |= ∀x ∈ [q] (x is P-generic over V ).

2 AP is an amoeba for P if for every p ∈ P and every AP-generic G , there is a
q ∈ PV [G ] such that V [G ] |= q ≤P p and for any larger model W ⊇ V [G ],

W |= ∀x ∈ [q] (x is P-generic over V ).

Examples:

1 S is a quasi-amoeba, but not an amoeba, for itself (Brendle 1998).

2 M is a quasi-amoeba, but not an amoeba, for itself (Brendle 1998).
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2 AP is an amoeba for P if for every p ∈ P and every AP-generic G , there is a
q ∈ PV [G ] such that V [G ] |= q ≤P p and for any larger model W ⊇ V [G ],

W |= ∀x ∈ [q] (x is P-generic over V ).

Examples:

1 S is a quasi-amoeba, but not an amoeba, for itself (Brendle 1998).

2 M is a quasi-amoeba, but not an amoeba, for itself (Brendle 1998).
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The methods

Method 1 (Bagaria-Judah)

1 If V |= Σ1
2(B) then V Bω1 |= ∆1

3(B).

2 If V |= Σ1
2(C) then V Cω1 |= ∆1

3(C).

Method 2 (Fischer-Friedman-Kh)

Suppose APi is a quasi-amoeba for Pi for all i ≤ k, and all Pi and APi are

Suslin+ proper. Then V (P0∗AP0∗···∗Pk∗APk )ω1 |= ∆1
3(Pi ) for each i .
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Yurii Khomskii (KGRC) Cichoń’s Diagram and Regularity Properties 3 September 2013 23 / 34



More methods

Method 3 (Fischer-Friedman-Kh)

Suppose V |= ∀r (ω
L[r ]
1 < ω1) and Pω1 := 〈Pα, Q̇α | α < ω1〉 is an iteration of

Suslin+ proper forcing notions in which P appears cofinally often. Then

V Pω1 |= ∆1
3(P).

Method 4 (Fischer-Friedman-Kh)

Suppose V |= ∀r (ω
L[r ]
1 < ω1), APi is a quasi-amoeba for Pi for all i ≤ k, and all

Pi and APi are Suslin+ proper. Then V (P0∗AP0∗···∗Pk∗APk )ω1 |= ∆1
4(Pi ) for each i .
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Separation

We almost have all ingredients necessary to separate regularity properties.
We need to fix the appropriate ground model:

1 To solve the Σ1
2/∆1

2-diagram, L was used as the ground model,
because L has a Σ1

2-good wellorder of the reals.

2 (Bagaria-Woodin; Friedman) From ZFC, we can construct a model L∗

in which

Σ1
2(P) holds for all P, but

there is a Σ1
3-good wellorder of the reals.

3 (Rene David) From ZFC + inaccessible, we can construct a model Ld

in which

∀r (ω
L[r ]
1 < ω1), but

there is a Σ1
3-good wellorder of the reals.
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Yurii Khomskii (KGRC) Cichoń’s Diagram and Regularity Properties 3 September 2013 26 / 34



∆1
3(B) +3 ∆1

3(S)

∆1
3(L) +3 ∆1

3(M)

6>tttttt
tttttt

∆1
3(C)

KS
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◦ = FALSE • = TRUE

◦ ◦

◦ ◦
}}

◦

L

◦ •

◦ ◦
}}

◦

LSω1

• •

◦ ◦
}}

◦

(L∗)Bω1

◦ •

◦ •
}}

◦

LMω1

◦ •

• •
}}

◦

L(L∗AL)ω1 or LRω1

◦ •

◦ •
}}

•

(L∗)Cω1

• •

◦ •
}}

◦

(Ld )(B∗M)ω1

• •

• •
}}

◦

(Ld )(B∗L)ω1

• •

◦ •
}}

•

(Ld )(B∗C)ω1

◦ •

• •
}}

•

(Ld )(C∗L)ω1

or a ZFC-model of
Bartoszyński-Judah

• •

• •
}}

•

L(B∗A∗C∗L∗AL)ω1

or L(B∗A∗C∗R)ω1
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◦ = FALSE • = TRUE

◦ ◦

◦ ◦
}}

◦

L

◦ •

◦ ◦
}}

◦

(Ld )Sω1

• •

◦ ◦
}}

◦

???

◦ •

◦ •
}}

◦

(Ld )Mω1

◦ •

• •
}}

◦

(Ld )(L∗AL)ω1 or (Ld )Rω1

◦ •

◦ •
}}

•

???

• •

◦ •
}}

◦

???

• •

• •
}}

◦

???

• •

◦ •
}}

•

???

◦ •

• •
}}

•

???

• •

• •
}}

•

(Ld )(B∗A∗C∗L∗AL)ω1

or (Ld )(B∗A∗C∗R)ω1

(or Solovay Model)
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•

(Ld )(B∗A∗C∗L∗AL)ω1

or (Ld )(B∗A∗C∗R)ω1

(or Solovay Model)

? Judah-Spinas 1995
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Open Questions

Open questions:

1 Is Σ1
3(P) and ∆1

3(P) equivalent for Sacks, Miller and Laver? (we
conjecture that they are not).

2 Solve the ∆1
3-diagram in ZFC.

3 Solve the other diagrams.

4 Consistency strength of Σ1
3(L)?
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Thank you!
Yurii Khomskii

yurii@deds.nl
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