Polarized partition properties on the second level of the projective hierarchy

Yurii Khomskii

University of Amsterdam

Joint work with Jörg Brendle (Kobe University, Japan)

ISLA 2010, Hyderabad, India

Yurii Khomskii (University of Amsterdam)

Polarized Partitions

ISLA 2010, Hyderabad, India

1 / 34

Introduction: Regularity properties and the projective hierarchy.

3

200

Regularity properties for sets of reals

Regularity properties for sets of reals

(e.g. Lebesgue measurability, Baire property, Ramsey property, Bernstein property)

• True for Borel sets

Regularity properties for sets of reals

- True for Borel sets
- True for analytic sets

Regularity properties for sets of reals

- True for Borel sets
- True for analytic sets
- False for all sets (AC)

Regularity properties for sets of reals

- True for Borel sets
- True for analytic sets
- False for all sets (AC)
- Δ¹₂/Σ¹₂?

Regularity properties for sets of reals

- True for Borel sets
- True for analytic sets
- False for all sets (AC)
- Δ_2^1 / Σ_2^1 ? Independent of ZFC

Regularity properties for sets of reals

- True for Borel sets
- True for analytic sets
- False for all sets (AC)
- Δ_2^1 / Σ_2^1 ? Independent of ZFC
 - False if V = L

Regularity properties for sets of reals

- True for Borel sets
- True for analytic sets
- False for all sets (AC)
- Δ_2^1 / Σ_2^1 ? Independent of ZFC
 - False if V = L
 - True if $L[a] \cap \omega^{\omega}$ is countable for all $a \in \omega^{\omega}$.

Regularity properties for sets of reals

(e.g. Lebesgue measurability, Baire property, Ramsey property, Bernstein property)

- True for Borel sets
- True for analytic sets
- False for all sets (AC)
- $\pmb{\Delta}_2^1/\pmb{\Sigma}_2^1?$ Independent of ZFC
 - False if V = L
 - True if $L[a] \cap \omega^{\omega}$ is countable for all $a \in \omega^{\omega}$.

More regularity on $\pmb{\Delta}_2^1/\pmb{\Sigma}_2^1$ -level $~\sim~$ L gets smaller

Examples

- Δ_2^1 (Lebesgue) $\iff \forall a \exists random-generic/L[a]$
- Δ_2^1 (Baire Property) $\iff \forall a \exists$ Cohen-generic/L[a]

Examples

- Δ_2^1 (Lebesgue) $\iff \forall a \exists random-generic/L[a]$
- Δ_2^1 (Baire Property) $\iff \forall a \exists$ Cohen-generic/L[a]
- $\Delta_2^1(\mathsf{Ramsey}) \iff \forall a \exists \mathsf{Ramsey real} / L[a]$
- $\Delta_2^1(\text{Laver}) \iff \forall a \exists \text{ dominating real } /L[a]$
- $\Delta_2^1(Miller) \iff \forall a \exists unbounded real / L[a]$
- $\Delta_2^1(Sacks) \iff \forall a \exists real \notin L[a]$

More Examples

- Σ_2^1 (Lebesgue) $\iff \forall a \exists$ measure-one set of random-generics/L[a]
- Σ_2^1 (Baire Property) $\iff \forall a \exists$ comeager set of Cohen-generics/L[a]

500

More Examples

- Σ_2^1 (Lebesgue) $\iff \forall a \exists$ measure-one set of random-generics/L[a]
- Σ_2^1 (Baire Property) $\iff \forall a \exists$ comeager set of Cohen-generics/L[a]
- $\Sigma_2^1(\mathsf{Ramsey}) \iff \Delta_2^1(\mathsf{Ramsey})$
- $\Sigma_2^1(Laver) \iff \Delta_2^1(Laver)$
- $\Sigma_2^1(Miller) \iff \Delta_2^1(Miller)$
- $\Sigma_2^1(Sacks) \iff \Delta_2^1(Sacks)$

- 小田 ト ・日 ト - 日

Implications and non-implications

Given two regularity properties Reg_1 and Reg_2 we are interested in:

 $\mathbf{\Gamma}(\operatorname{Reg}_1) \implies \mathbf{\Gamma}'(\operatorname{Reg}_2)?$

for $\mathbf{\Gamma},\mathbf{\Gamma}'\in\{\mathbf{\Delta}_2^1,\mathbf{\Sigma}_2^1\}$

Implications and non-implications

Given two regularity properties Reg_1 and Reg_2 we are interested in:

$$\mathbf{\Gamma}(\operatorname{Reg}_1) \implies \mathbf{\Gamma}'(\operatorname{Reg}_2)?$$

for $\pmb{\Gamma},\pmb{\Gamma}'\in\{\pmb{\Delta}_2^1,\pmb{\Sigma}_2^1\}$

- Positive answer: find a ZFC-proof
- Negative answer: find a model M s.t. $M \models \Gamma(\text{Reg}_1)$ but $M \models \neg \Gamma'(\text{Reg}_2)$

Implications and non-implications

Given two regularity properties Reg_1 and Reg_2 we are interested in:

$$\mathbf{\Gamma}(\operatorname{Reg}_1) \implies \mathbf{\Gamma}'(\operatorname{Reg}_2)?$$

for $\pmb{\Gamma},\pmb{\Gamma}'\in\{\pmb{\Delta}_2^1,\pmb{\Sigma}_2^1\}$

- Positive answer: find a ZFC-proof
- Negative answer: find a model M s.t. $M \models \Gamma(\text{Reg}_1)$ but $M \models \neg \Gamma'(\text{Reg}_2)$

What has been established so far?

Diagram of implications

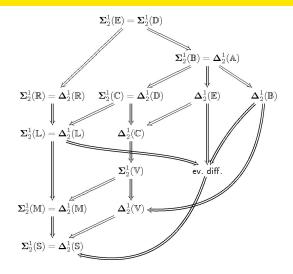


Diagram: Brendle & Löwe, Eventually different functions and inaccessible cardinals

э

Polarized partition properties.

3

200

(4 同) (4 日) (4 日)

Polarized partitions

We work in ω^{ω} . Letters H, J, \ldots stand for infinite sequences of finite subsets of ω , i.e. $H : \omega \longrightarrow [\omega]^{<\omega}$. Use abbreviation: $[H] = \prod_{i \in \omega} H(i)$.

Polarized partitions

We work in ω^{ω} . Letters H, J, \ldots stand for infinite sequences of finite subsets of ω , i.e. $H : \omega \longrightarrow [\omega]^{<\omega}$. Use abbreviation: $[H] = \prod_{i \in \omega} H(i)$.

Definition (unbounded polarized partition)

A set
$$A \subseteq \omega^{\omega}$$
 satisfies the property $\begin{pmatrix} \omega \\ \omega \\ \cdots \end{pmatrix} \rightarrow \begin{pmatrix} m_0 \\ m_1 \\ \cdots \end{pmatrix}$ if

$$\exists H \text{ s.t. } \forall i \ (|H(i)| = m_i) \text{ and } [H] \subseteq A \text{ or } [H] \cap A = \emptyset$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Polarized partitions

We work in ω^{ω} . Letters H, J, \ldots stand for infinite sequences of finite subsets of ω , i.e. $H : \omega \longrightarrow [\omega]^{<\omega}$. Use abbreviation: $[H] = \prod_{i \in \omega} H(i)$.

Definition (unbounded polarized partition)

A set
$$A \subseteq \omega^{\omega}$$
 satisfies the property $\begin{pmatrix} \omega \\ \omega \\ \cdots \end{pmatrix} \rightarrow \begin{pmatrix} m_0 \\ m_1 \\ \cdots \end{pmatrix}$ if

$$\exists H \text{ s.t. } \forall i \ (|H(i)| = m_i) \text{ and } [H] \subseteq A \text{ or } [H] \cap A = \varnothing$$

Definition (bounded polarized partition)

A set
$$A \subseteq \omega^{\omega}$$
 satisfies the property $\begin{pmatrix} n_0 \\ n_1 \\ \cdots \end{pmatrix} \rightarrow \begin{pmatrix} m_0 \\ m_1 \\ \cdots \end{pmatrix}$ if

 $\exists H \text{ s.t. } \forall i \ (|H(i)| = m_i \text{ and } H(i) \subseteq n_i) \text{ and } [H] \subseteq A \text{ or } [H] \cap A = \emptyset$

and n_1, n_2, \ldots are recursive in m_1, m_2, \ldots

Some facts

Polarized partition properties have been studied by Henle, Llopis, DiPrisco, Todorčević and Zapletal.

500

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Some facts

Polarized partition properties have been studied by Henle, Llopis, DiPrisco, Todorčević and Zapletal.

Easy observations:

1 In order for $(\vec{n} \rightarrow \vec{m})$ to hold even for very simple sets, $\vec{n} \gg \vec{m}$.

Some facts

Polarized partition properties have been studied by Henle, Llopis, DiPrisco, Todorčević and Zapletal.

Easy observations:

1 In order for $(\vec{n} \rightarrow \vec{m})$ to hold even for very simple sets, $\vec{n} \gg \vec{m}$.

2
$$\Gamma(\vec{n} \to \vec{m}) \implies \Gamma(\vec{\omega} \to \vec{m}).$$

Polarized partition properties have been studied by Henle, Llopis, DiPrisco, Todorčević and Zapletal.

Easy observations:

1 In order for $(\vec{n} \rightarrow \vec{m})$ to hold even for very simple sets, $\vec{n} \gg \vec{m}$.

2
$$\Gamma(\vec{n} \to \vec{m}) \implies \Gamma(\vec{\omega} \to \vec{m}).$$

$$\bullet \quad \mathbf{\Gamma}(\vec{\omega} \to \vec{m}) \iff \mathbf{\Gamma}(\vec{\omega} \to \vec{m'}), \text{ for all } \vec{m}, \vec{m'} \ge 2.$$

• If $\Gamma(\vec{n} \to \vec{m})$, then for every other $\vec{m'}$ there is $\vec{n'}$ such that $\Gamma(\vec{n'} \to \vec{m'})$

Polarized partition properties have been studied by Henle, Llopis, DiPrisco, Todorčević and Zapletal.

Easy observations:

1 In order for $(\vec{n} \rightarrow \vec{m})$ to hold even for very simple sets, $\vec{n} \gg \vec{m}$.

2
$$\Gamma(\vec{n} \to \vec{m}) \implies \Gamma(\vec{\omega} \to \vec{m}).$$

3 •
$$\Gamma(\vec{\omega} \to \vec{m}) \iff \Gamma(\vec{\omega} \to \vec{m'})$$
, for all $\vec{m}, \vec{m'} \ge 2$.
• If $\Gamma(\vec{n} \to \vec{m})$, then for every other $\vec{m'}$ there is $\vec{n'}$ such that $\Gamma(\vec{n'} \to \vec{m'})$.

From now on, use generic notations $(\vec{\omega} \rightarrow \vec{m})$ and $(\vec{n} \rightarrow \vec{m})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Which sets satisfy this property?

In [DiPrisco & Todorčević, 2003]:

- $(ec{\omega}
 ightarrow ec{m})$ and $(ec{n}
 ightarrow ec{m})$ hold for analytic sets.
- Explicit bounds \vec{n} computed from \vec{m} (using Ackermann-like function).

Which sets satisfy this property?

In [DiPrisco & Todorčević, 2003]:

- $(ec{\omega}
 ightarrow ec{m})$ and $(ec{n}
 ightarrow ec{m})$ hold for analytic sets.
- Explicit bounds \vec{n} computed from \vec{m} (using Ackermann-like function).

On the other hand, easy to find counterexample using AC.

Which sets satisfy this property?

In [DiPrisco & Todorčević, 2003]:

- $(\vec{\omega} \to \vec{m})$ and $(\vec{n} \to \vec{m})$ hold for analytic sets.
- Explicit bounds \vec{n} computed from \vec{m} (using Ackermann-like function).

On the other hand, easy to find counterexample using AC.

So, what about $\mathbf{\Delta}_2^1/\mathbf{\Sigma}_2^1(\vec{\omega} \to \vec{m})$ and $\mathbf{\Delta}_2^1/\mathbf{\Sigma}_2^1(\vec{n} \to \vec{m})$?

Δ_2^1 -level: easy results.

Upper and lower bounds

Theorem

$$\Delta_2^1(Ramsey) \implies \Delta_2^1(\vec{\omega} \to \vec{m}).$$

Yurii Khomskii (University of Amsterdam)

Polarized Partitions

ISLA 2010, Hyderabad, India 13 / 34

- 4 同 ト 4 回 ト

Upper and lower bounds

Theorem

$$\mathbf{\Delta}_{2}^{1}(Ramsey) \implies \mathbf{\Delta}_{2}^{1}(\vec{\omega} \rightarrow \vec{m}).$$

Theorem (Brendle)

If $\mathbf{\Delta}_2^1(\vec{\omega} \to \vec{m})$ then $\forall a$ there is an eventually different real over L[a].

nac

Upper and lower bounds

Theorem

$$\mathbf{\Delta}_2^1(\mathit{Ramsey}) \implies \mathbf{\Delta}_2^1(ec{\omega} o ec{m}).$$

Theorem (Brendle)

If $\mathbf{\Delta}_2^1(\vec{\omega} \to \vec{m})$ then $\forall a$ there is an eventually different real over L[a].

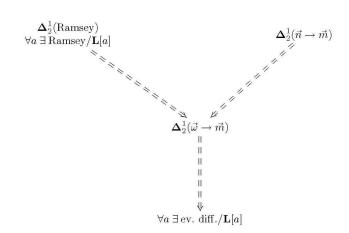
Proof.

Assume otherwise and use the canonical $\Delta_2^1(a)$ -well-ordering of L[a] to construct a counterexample.

nac

 Δ_2^1 -level: easy results

Diagram of implications



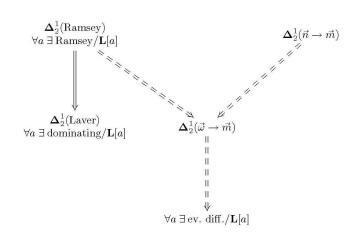
Yurii Khomskii (University of Amsterdam)

- (E ISLA 2010, Hyderabad, India 14 / 34

3

990

Diagram of implications



Yurii Khomskii (University of Amsterdam)

Polarized Partitions

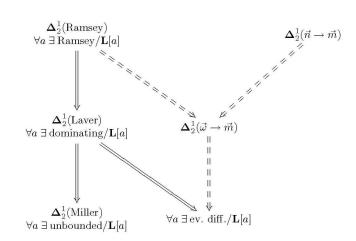
ISLA 2010, Hyderabad, India

э

୬ ୯.୦ 14 / 34

3

Diagram of implications



Yurii Khomskii (University of Amsterdam)

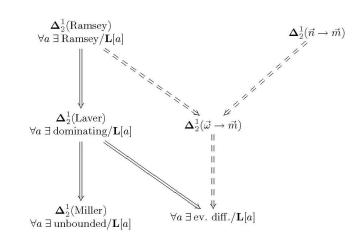
Polarized Partitions

ISLA 2010, Hyderabad, India

ndia 14/34

990

Diagram of implications



Question: which implications cannot be reversed?

Yurii Khomskii (University of Amsterdam)

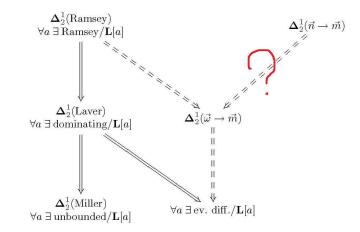
Polarized Partitions

ISLA 2010, Hyderabad, India

SQA

14 / 34

Diagram of implications



Question: which implications cannot be reversed?

Yurii Khomskii (University of Amsterdam)

Polarized Partitions

ISLA 2010, Hyderabad, India

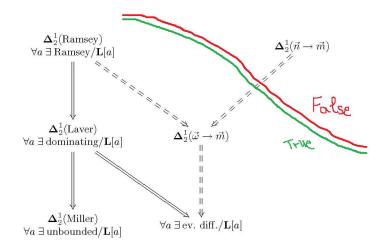
15 / 34

Mathias model

Theorem (Brendle-Kh)

Let V be obtained by an ω_1 -iteration of Mathias forcing beginning from L. Then $\Delta_2^1(Ramsey)$ holds whereas $\Delta_2^1(\vec{n} \to \vec{m})$ fails.

Diagram of implications



900

17 / 34

Mathias model

Theorem (Brendle-Kh)

Let V be obtained by an ω_1 -iteration of Mathias forcing beginning from L. Then $\Delta_2^1(Ramsey)$ holds whereas $\Delta_2^1(\vec{n} \to \vec{m})$ fails.

Mathias model

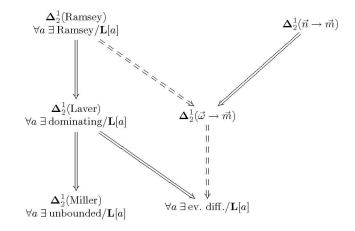
Theorem (Brendle-Kh)

Let V be obtained by an ω_1 -iteration of Mathias forcing beginning from L. Then $\Delta_2^1(Ramsey)$ holds whereas $\Delta_2^1(\vec{n} \to \vec{m})$ fails.

Proof.

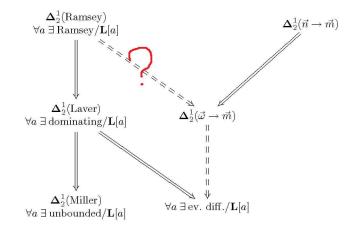
Use the fact that Mathias forcing satisfies the Laver property.

Diagram of implications



990

Diagram of implications



Yurii Khomskii (University of Amsterdam)

ISLA 2010, Hyderabad, India

シへで 19 / 34

Δ_2^1 -level: creature forcing.

<□> < => < => < => < = < 0 < 0

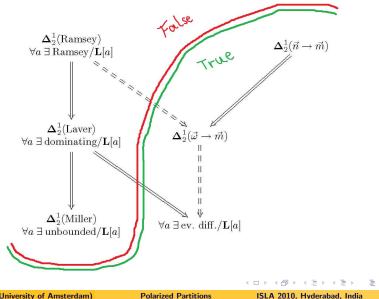
Theorem (Brendle-Kh)

There is a model in which $\Delta_2^1(\vec{n} \to \vec{m})$ holds but $\Delta_2^1(Miller)$ fails. (i.e. there are no unbounded reals).

・ 同 ト ・ ヨ ト ・ 日 ト …

 Δ_2^1 -level: creature forcing

Diagram of implications



Yurii Khomskii (University of Amsterdam)

22 / 34

990

Theorem (Brendle-Kh)

There is a model in which $\Delta_2^1(\vec{n} \to \vec{m})$ holds but $\Delta_2^1(Miller)$ fails. (i.e. there are no unbounded reals).

Theorem (Brendle-Kh)

There is a model in which $\Delta_2^1(\vec{n} \to \vec{m})$ holds but $\Delta_2^1(Miller)$ fails. (i.e. there are no unbounded reals).

Look for a forcing notion which is:

Theorem (Brendle-Kh)

There is a model in which $\Delta_2^1(\vec{n} \to \vec{m})$ holds but $\Delta_2^1(Miller)$ fails. (i.e. there are no unbounded reals).

Look for a forcing notion which is:

Proper and ω^ω-bounding—for all ẋ there is a y in the ground model and a p s.t. p ⊢ ∀n (ẋ(n) ≤ ỹ(n)).

Theorem (Brendle-Kh)

There is a model in which $\Delta_2^1(\vec{n} \to \vec{m})$ holds but $\Delta_2^1(Miller)$ fails. (i.e. there are no unbounded reals).

Look for a forcing notion which is:

- Proper and ω^ω-bounding—for all ẋ there is a y in the ground model and a p s.t. p ⊢ ∀n (ẋ(n) ≤ ỹ(n)).
- An ω_1 -iteration beginning from *L* yields a model where $\Delta_2^1(\vec{n} \to \vec{m})$ holds.

Such a forcing notion exists!

900

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Such a forcing notion exists!

A certain kind of **creature forcing**, due to [Kellner-Shelah, 2009] and [Shelah-Zapletal, unpublished]. We shall refer to it as \mathbb{P}_{KSZ} .

Such a forcing notion exists!

A certain kind of **creature forcing**, due to [Kellner-Shelah, 2009] and [Shelah-Zapletal, unpublished]. We shall refer to it as \mathbb{P}_{KSZ} .

Definition

• At each *n*, a small ϵ_n is given, and we build a "mini-forcing" \mathbb{P}_n :

Such a forcing notion exists!

A certain kind of **creature forcing**, due to [Kellner-Shelah, 2009] and [Shelah-Zapletal, unpublished]. We shall refer to it as \mathbb{P}_{KSZ} .

Definition

- At each *n*, a small ϵ_n is given, and we build a "mini-forcing" \mathbb{P}_n :
 - Let X(n) ∈ ω be a 'large' upper bound. P_n consists of 'conditions' of the form (c, k) with c ⊆ X(n) and k ∈ ω such that log₃(|c|) ≥ k + 1

Such a forcing notion exists!

A certain kind of **creature forcing**, due to [Kellner-Shelah, 2009] and [Shelah-Zapletal, unpublished]. We shall refer to it as \mathbb{P}_{KSZ} .

Definition

- At each *n*, a small ϵ_n is given, and we build a "mini-forcing" \mathbb{P}_n :
 - Let X(n) ∈ ω be a 'large' upper bound. P_n consists of 'conditions' of the form (c, k) with c ⊆ X(n) and k ∈ ω such that log₃(|c|) ≥ k + 1
 - $(c',k') \leq_n (c,k)$ iff $c' \subseteq c$ and $k' \geq k$.

Such a forcing notion exists!

A certain kind of **creature forcing**, due to [Kellner-Shelah, 2009] and [Shelah-Zapletal, unpublished]. We shall refer to it as \mathbb{P}_{KSZ} .

Definition

- At each *n*, a small ϵ_n is given, and we build a "mini-forcing" \mathbb{P}_n :
 - Let X(n) ∈ ω be a 'large' upper bound. P_n consists of 'conditions' of the form (c, k) with c ⊆ X(n) and k ∈ ω such that log₃(|c|) ≥ k + 1
 (c', k') ≤_n (c, k) iff c' ⊂ c and k' ≥ k.
- Let $a_n := 2^{1/\epsilon_n}$. Define $\operatorname{norm}_n(c, k) := \log_{a_n}(\log_3(|c|) k)$ for each $(c, k) \in \mathbb{P}_n$.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q ()

Such a forcing notion exists!

A certain kind of **creature forcing**, due to [Kellner-Shelah, 2009] and [Shelah-Zapletal, unpublished]. We shall refer to it as \mathbb{P}_{KSZ} .

Definition

- At each *n*, a small ϵ_n is given, and we build a "mini-forcing" \mathbb{P}_n :
 - Let X(n) ∈ ω be a 'large' upper bound. P_n consists of 'conditions' of the form (c, k) with c ⊆ X(n) and k ∈ ω such that log₃(|c|) ≥ k + 1
 (c', k') ≤_n (c, k) iff c' ⊂ c and k' ≥ k.
- Let $a_n := 2^{1/\epsilon_n}$. Define $\operatorname{norm}_n(c, k) := \log_{a_n}(\log_3(|c|) k)$ for each $(c, k) \in \mathbb{P}_n$.

If X(n) is sufficiently large, then $\exists (c,k) \in \mathbb{P}_n \text{ s.t. } \operatorname{norm}_n(c,k) \geq n$.

[To be precise: X(n) must be larger then $2^{((2^{1/\epsilon_n})^n)}$]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

24 / 34

 Δ_2^1 -level: creature forcing

Creature forcing: continued

Definition (...continued)

Now let \mathbb{P}_{KSZ} consist of conditions *p* such that:

Yurii Khomskii (University of Amsterdam)

Polarized Partitions

Image: A ISLA 2010, Hyderabad, India 25 / 34

< 67 ▶

3

SQC

 Δ_2^1 -level: creature forcing

Creature forcing: continued

Definition (...continued)

Now let \mathbb{P}_{KSZ} consist of conditions *p* such that:

• There is $\operatorname{stem}(p) \in \omega^{<\omega}$ and $\forall n \ge |\operatorname{stem}(p)| : p(n) \in \mathbb{P}_n$,

Definition (...continued)

Now let \mathbb{P}_{KSZ} consist of conditions p such that:

- There is $\operatorname{stem}(p) \in \omega^{<\omega}$ and $\forall n \geq |\operatorname{stem}(p)| : p(n) \in \mathbb{P}_n$,
- $\lim_{n\to\infty} \operatorname{norm}_n(p(n)) = \infty$.

Definition (...continued)

Now let \mathbb{P}_{KSZ} consist of conditions p such that:

• There is $\operatorname{stem}(p) \in \omega^{<\omega}$ and $\forall n \ge |\operatorname{stem}(p)| : p(n) \in \mathbb{P}_n$,

•
$$\lim_{n\to\infty} \operatorname{norm}_n(p(n)) = \infty$$
.

•
$$p' \leq p$$
 iff

Definition (...continued)

Now let \mathbb{P}_{KSZ} consist of conditions p such that:

• There is $\operatorname{stem}(p) \in \omega^{<\omega}$ and $\forall n \ge |\operatorname{stem}(p)| : p(n) \in \mathbb{P}_n$,

•
$$\lim_{n\to\infty} \operatorname{norm}_n(p(n)) = \infty$$
.

- *p*′ ≤ *p* iff
 - $\operatorname{stem}(p') \supseteq \operatorname{stem}(p)$

Definition (...continued)

Now let \mathbb{P}_{KSZ} consist of conditions p such that:

• There is $\operatorname{stem}(p) \in \omega^{<\omega}$ and $\forall n \ge |\operatorname{stem}(p)| : p(n) \in \mathbb{P}_n$,

•
$$\lim_{n\to\infty} \operatorname{norm}_n(p(n)) = \infty$$
.

- *p*′ ≤ *p* iff
 - $\operatorname{stem}(p') \supseteq \operatorname{stem}(p)$
 - For n with $|\text{stem}(p)| \le n < |\text{stem}(p')|$: $p'(n) \in \text{first coordinate of } p(n)$

Definition (...continued)

Now let \mathbb{P}_{KSZ} consist of conditions p such that:

• There is $\operatorname{stem}(p) \in \omega^{<\omega}$ and $\forall n \ge |\operatorname{stem}(p)| : p(n) \in \mathbb{P}_n$,

•
$$\lim_{n\to\infty} \operatorname{norm}_n(p(n)) = \infty$$
.

- *p*′ ≤ *p* iff
 - $\operatorname{stem}(p') \supseteq \operatorname{stem}(p)$
 - For n with $|\text{stem}(p)| \le n < |\text{stem}(p')|$: $p'(n) \in \text{first coordinate of } p(n)$
 - For $n \ge |\operatorname{stem}(p')|$: $p'(n) \le_n p(n)$

Definition (...continued)

Now let \mathbb{P}_{KSZ} consist of conditions p such that:

• There is $\operatorname{stem}(p) \in \omega^{<\omega}$ and $\forall n \ge |\operatorname{stem}(p)| : p(n) \in \mathbb{P}_n$,

•
$$\lim_{n\to\infty} \operatorname{norm}_n(p(n)) = \infty$$
.

- *p*′ ≤ *p* iff
 - $\operatorname{stem}(p') \supseteq \operatorname{stem}(p)$
 - For n with $|\text{stem}(p)| \le n < |\text{stem}(p')|$: $p'(n) \in \text{first coordinate of } p(n)$
 - For $n \ge |\operatorname{stem}(p')|$: $p'(n) \le_n p(n)$

Remark: \mathbb{P}_{KSZ} adds a generic real $x_G := \bigcup \{ stem(p) \mid p \in G \}$

Definition (...continued)

Now let \mathbb{P}_{KSZ} consist of conditions *p* such that:

• There is stem(p) $\in \omega^{<\omega}$ and $\forall n > |\text{stem}(p)| : p(n) \in \mathbb{P}_n$,

•
$$\lim_{n\to\infty} \operatorname{norm}_n(p(n)) = \infty$$
.

- p' < p iff
 - $\operatorname{stem}(p') \supseteq \operatorname{stem}(p)$
 - For *n* with $|\text{stem}(p)| \le n < |\text{stem}(p')|$: $p'(n) \in \text{first coordinate of } p(n)$
 - For $n \ge |\operatorname{stem}(p')|$: $p'(n) \le_n p(n)$

Remark: \mathbb{P}_{KSZ} adds a generic real $x_G := \bigcup \{ \text{stem}(p) \mid p \in G \}$, but the generic filter is not determined from the generic real in the usual fashion

Definition (...continued)

Now let \mathbb{P}_{KSZ} consist of conditions p such that:

• There is $\operatorname{stem}(p) \in \omega^{<\omega}$ and $\forall n \ge |\operatorname{stem}(p)| : p(n) \in \mathbb{P}_n$,

•
$$\lim_{n\to\infty} \operatorname{norm}_n(p(n)) = \infty$$
.

- *p*′ ≤ *p* iff
 - $\operatorname{stem}(p') \supseteq \operatorname{stem}(p)$
 - For n with $|\text{stem}(p)| \le n < |\text{stem}(p')|$: $p'(n) \in \text{first coordinate of } p(n)$
 - For $n \ge |\operatorname{stem}(p')|$: $p'(n) \le_n p(n)$

Remark: \mathbb{P}_{KSZ} adds a **generic real** $x_G := \bigcup \{ \operatorname{stem}(p) \mid p \in G \}$, but the generic filter is not determined from the generic real in the usual fashion and \mathbb{P}_{KSZ} is not in general representable as $\mathcal{B}(\omega^{\omega})/I$ for a σ -ideal I.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Proper and ω^{ω} -bounding

Theorem (Kellner-Shelah, Shelah-Zapletal)

If \mathbb{P}_{KSZ} is as above, and moreover $\forall n \ \left(\epsilon_n \leq \frac{1}{n \cdot \prod_{j < n} X(j)}\right)$, then \mathbb{P}_{KSZ} is proper and ω^{ω} -bounding.

Proper and ω^{ω} -bounding

Theorem (Kellner-Shelah, Shelah-Zapletal)

If \mathbb{P}_{KSZ} is as above, and moreover $\forall n \ \left(\epsilon_n \leq \frac{1}{n \cdot \prod_{j < n} X(j)}\right)$, then \mathbb{P}_{KSZ} is proper and ω^{ω} -bounding.

Proof.

Show that each component \mathbb{P}_n of \mathbb{P}_{KSZ} satisfies two properties from the general theory of creature forcings: " ϵ_n -bigness" and " ϵ_n -halving".

Proper and ω^{ω} -bounding

Theorem (Kellner-Shelah, Shelah-Zapletal)

If \mathbb{P}_{KSZ} is as above, and moreover $\forall n \ \left(\epsilon_n \leq \frac{1}{n \cdot \prod_{j < n} X(j)}\right)$, then \mathbb{P}_{KSZ} is proper and ω^{ω} -bounding.

Proof.

Show that each component \mathbb{P}_n of \mathbb{P}_{KSZ} satisfies two properties from the general theory of creature forcings: " ϵ_n -bigness" and " ϵ_n -halving".

Remark: X(n) is a function of ϵ_n , and ϵ_n is a function of X(m) for m < n. So we have to define them inductively.

 Δ_2^1 -level: creature forcing

Forcing $\mathbf{\Delta}_2^1(\vec{n} \to \vec{m})$

Theorem (Brendle-Kh)

An ω_1 -iteration of \mathbb{P}_{KSZ} , starting from L, gives a model in which $\mathbf{\Delta}_2^1(\vec{n} \to \vec{m})$ holds but $\mathbf{\Delta}_2^1(Miller)$ fails.

 Δ_2^1 -level: creature forcing

Forcing $\mathbf{\Delta}_2^1(\vec{n} \rightarrow \vec{m})$

Theorem (Brendle-Kh)

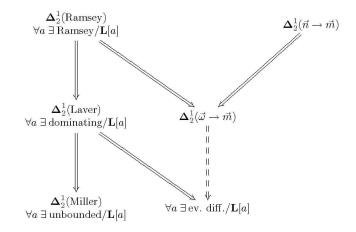
An ω_1 -iteration of \mathbb{P}_{KSZ} , starting from L, gives a model in which $\mathbf{\Delta}_2^1(\vec{n} \to \vec{m})$ holds but $\mathbf{\Delta}_2^1(Miller)$ fails.

The bounds " \vec{n} " have been explicitly computed beforehand: they are the X(n)'s from the definition of \mathbb{P}_{KSZ} .

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ● ● ● ● ● ●

 Δ_2^1 -level: creature forcing

Diagram of implications



Yurii Khomskii (University of Amsterdam)

Polarized Partitions

ISLA 2010, Hyderabad, India

Open questions for Δ_2^1

500

1 Is the implication $\Delta_2^1(\vec{\omega} \to \vec{m}) \Longrightarrow \exists$ ev. diff. reals strict?

• Is the implication $\Delta_2^1(\vec{\omega} \to \vec{m}) \Longrightarrow \exists$ ev. diff. reals strict? Conjecture: Yes, $\Delta_2^1(\vec{\omega} \to \vec{m})$ fails in the Random model.

- Is the implication $\Delta_2^1(\vec{\omega} \to \vec{m}) \Longrightarrow \exists$ ev. diff. reals strict? Conjecture: Yes, $\Delta_2^1(\vec{\omega} \to \vec{m})$ fails in the Random model.
- **2** Is there a characterization of $\Delta_2^1(\vec{\omega} \to \vec{m})$ and $\Delta_2^1(\vec{n} \to \vec{m})$ in terms of transcendence over *L*?

- Is the implication $\Delta_2^1(\vec{\omega} \to \vec{m}) \Longrightarrow \exists$ ev. diff. reals strict? Conjecture: Yes, $\Delta_2^1(\vec{\omega} \to \vec{m})$ fails in the Random model.
- **2** Is there a characterization of $\Delta_2^1(\vec{\omega} \to \vec{m})$ and $\Delta_2^1(\vec{n} \to \vec{m})$ in terms of transcendence over *L*?
- Are $\mathbf{\Delta}_2^1(\vec{\omega} \to \vec{m})$ and $\mathbf{\Sigma}_2^1(\vec{\omega} \to \vec{m})$ equivalent?

- Is the implication $\Delta_2^1(\vec{\omega} \to \vec{m}) \Longrightarrow \exists$ ev. diff. reals strict? Conjecture: Yes, $\Delta_2^1(\vec{\omega} \to \vec{m})$ fails in the Random model.
- Is there a characterization of $\Delta_2^1(\vec{\omega} \rightarrow \vec{m})$ and $\Delta_2^1(\vec{n} \rightarrow \vec{m})$ in terms of transcendence over *L*?
- Are $\mathbf{\Delta}_2^1(\vec{\omega} \to \vec{m})$ and $\mathbf{\Sigma}_2^1(\vec{\omega} \to \vec{m})$ equivalent?
- Same for $(\vec{n} \rightarrow \vec{m})$.

The Σ_2^1 -level

Yurii Khomskii (University of Amsterdam)

Polarized Partitions

ISLA 2010, Hyderabad, India 31 / 34

<□> < => < => < => < => < <<

Can we extend the result about \mathbb{P}_{KSZ} to Σ_2^1 ?

Can we extend the result about \mathbb{P}_{KSZ} to Σ_2^1 ?

Not a priori, since $\mathbb{P}_{\mathrm{KSZ}}$ only adds one generic real.

Can we extend the result about \mathbb{P}_{KSZ} to Σ_2^1 ?

Not a priori, since $\mathbb{P}_{\mathrm{KSZ}}$ only adds one generic real.

In [DiPrisco & Todorčević, 2003] a forcing is defined which adds a **generic product** H_G satisfying what we will call the "clopification property":

Can we extend the result about \mathbb{P}_{KSZ} to Σ_2^1 ?

Not a priori, since $\mathbb{P}_{\mathrm{KSZ}}$ only adds one generic real.

In [DiPrisco & Todorčević, 2003] a forcing is defined which adds a **generic product** H_G satisfying what we will call the "clopification property":

For all Borel sets *B* in the ground model, $B \cap [H_G]$ is relatively clopen in $[H_G]$.

Can we extend the result about \mathbb{P}_{KSZ} to Σ_2^1 ?

Not a priori, since $\mathbb{P}_{\mathrm{KSZ}}$ only adds one generic real.

In [DiPrisco & Todorčević, 2003] a forcing is defined which adds a **generic product** H_G satisfying what we will call the "clopification property":

For all Borel sets *B* in the ground model, $B \cap [H_G]$ is relatively clopen in $[H_G]$.

Theorem (Brendle-Kh)

An ω_1 -iteration of any (proper) forcing notion with the clopification property, starting from L, gives a model where $\Sigma_2^1(\vec{n} \to \vec{m})$ holds.

Forcing $\Sigma_2^1(\vec{n} \to \vec{m})$: continued

Problem with using the DiPrisco-Todorčević forcing: difficult to see whether it is $\omega^\omega\text{-bounding or not.}$

Forcing $\Sigma_2^1(\vec{n} \to \vec{m})$: continued

Problem with using the DiPrisco-Todorčević forcing: difficult to see whether it is $\omega^\omega\text{-bounding or not.}$

So instead, we combine elements of the DiPrisco-Todorčević forcing with $\mathbb{P}_{\mathrm{KSZ}},$

Forcing $\Sigma_2^1(\vec{n} \rightarrow \vec{m})$: continued

Problem with using the DiPrisco-Todorčević forcing: difficult to see whether it is $\omega^\omega\text{-bounding or not.}$

So instead, we combine elements of the DiPrisco-Todorčević forcing with $\mathbb{P}_{\rm KSZ},$ to produce a new creature forcing $\mathbb P$

Forcing $\Sigma_2^1(\vec{n} \rightarrow \vec{m})$: continued

Problem with using the DiPrisco-Todorčević forcing: difficult to see whether it is $\omega^\omega\text{-bounding or not.}$

So instead, we combine elements of the DiPrisco-Todorčević forcing with $\mathbb{P}_{\rm KSZ}$, to produce a new creature forcing $\mathbb P$ which is still proper and ω^ω -bounding

Forcing $\Sigma_2^1(\vec{n} \rightarrow \vec{m})$: continued

Problem with using the DiPrisco-Todorčević forcing: difficult to see whether it is $\omega^\omega\text{-bounding or not.}$

So instead, we combine elements of the DiPrisco-Todorčević forcing with $\mathbb{P}_{\rm KSZ}$, to produce a new creature forcing $\mathbb P$ which is still proper and ω^ω -bounding, but instead of adding a real, adds a product of reals with the clopification property.

Forcing $\Sigma_2^1(\vec{n} \to \vec{m})$: continued

Problem with using the DiPrisco-Todorčević forcing: difficult to see whether it is $\omega^\omega\text{-bounding or not.}$

So instead, we combine elements of the DiPrisco-Todorčević forcing with \mathbb{P}_{KSZ} , to produce a new creature forcing \mathbb{P} which is still proper and ω^{ω} -bounding, but instead of adding a real, adds a product of reals with the clopification property.

Corollary

There is a model where $\Sigma_2^1(\vec{n} \to \vec{m})$ holds but $\Sigma_2^1(Miller)$ fails.

Thank you!

Yurii Khomskii

yurii@deds.nl

- Carlos A. Di Prisco, Stevo Todorčević, Souslin partitions of products of finite sets, Advances in Mathematics, vol. 176 (2003), pp. 145–173.
- Jakob Kellner, Saharon Shelah, Decisive creatures and large continuum, Journal of Symbolic Logic, Volume 74, Issue 1 (2009), pp 73–104; [KrSh:872].
- Andrzej Rosłanowski, Saharon Shelah, *Norms on Possibilities I: Forcing with Trees and Creatures*, Memoirs of the American Mathematical Society 671 (1999); [RoSh:470].