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Purpose of this talk

@ Recently, in joint work with Vera Fischer and Sy Friedman, we made
some progress in separating various regularity properties on the A%,
1 and A} levels.

@ We constructed models by iterating “definable” forcing.

o | will talk about the methods involved.
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Sample result

AY(V) =————> A)(S)

AY(R) = A3(L) A(M)

A3(0)

C = Baire property; B = Lebesgue measure; S = Sacks-measurability; Ml = Miller-measurability;
L = Laver-measurability; V = Silver measurability; R = Ramsey property.
Theorem (Fischer-Friedman-Kh)

Each constellation of “true”/“false” assignments (18 possibilities ) to the above

statements not contradicting this diagram, is consistent r.t. ZFC or ZFC + inaccessible.
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Sacks forcing

| will present just one of the methods, using Sacks forcing as a canonical
example.

Definition
Sacks forcing S is the partial order of perfect trees on 2<“ ordered by
inclusion.

Yurii Khomskii (KGRC) Suslin Proper Forcing and Regularity Proper INFTY Final 4 /26



Sacks-measurability

Definition
A C 2% is Sacks-measurable iff there is a perfect tree T C 2<% such that
[TICAor [TINA=2.

The usual definition is “below any Sacks-condition S thereisa T < S ...", but this is

equivalent for sufficiently closed pointclasses T'.
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There exists a non Sacks-measurable set. '

Enumerate perfect trees {T,, | o < 2%} and “diagonalize” (Bernstein set).

«O0)>» «F» «=)» 4« Q>
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Sacks-measurability depends on the complexity of A

Theorem (Bernstein 1908)

There exists a non Sacks-measurable set.

Proof.

Enumerate perfect trees {T,, | @ < 2%} and “diagonalize” (Bernstein set). O

Theorem (Suslin 1917)

All analytic sets are Sacks-measurable.

Modern proof.

Let A= {x | ¢(x)}. Let x¢ be the name for the Sacks-generic real, and let T be
a Sacks-condition deciding ¢(x¢), w.l.o.g. T IF ¢(Xg). Let M < Hg be a
countable elementary submodel with S, T € M. Using a properness
argument find S < T such that all x € [S] are Sacks-generic over M. So for all
x € [S], M[x] & ¢(x), and by Xi-absoluteness ¢(x). Therefore [T] C A. O
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L = -ALS).
Again diagonalize against all perfect trees, but use the 2%-good
wellorder of the reals of L.

O
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Beyond X1

Theorem (Folklore)
VS = AL(S).

Proof.

Let A= {x| ¢(x)} = {x| "¢(x)}, w.l.o.g. parameters in V. The statement

Vx (¢(x) <> —1p(x)) is TI3 hence downward absolute between V5«1 and V5. In V
find Sacks-condition T forcing ¢(X¢) or 1)(xg), and proceed as before (and use
upwards X3-absoluteness from M[x] to V/51). O
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Beyond X1

Theorem (Folklore)
VS = AL(S).

Proof.

Let A= {x| ¢(x)} = {x| "¢(x)}, w.l.o.g. parameters in V. The statement

Vx (¢(x) <> —1p(x)) is TI3 hence downward absolute between V5«1 and V5. In V
find Sacks-condition T forcing ¢(X¢) or 1)(xg), and proceed as before (and use
upwards X3-absoluteness from M[x] to V/51). O

Remark: It is not hard to do better and obtain V5«1 = 31(S).
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Beyond X}

Question

Can we use similar methods to obtain AL(S), Z1(S) etc.?

Problems:

@ We used Shoenfield absoluteness and X{-absoluteness for
countable models.

@ Using coding techniques (e.g. "almost disjoint coding”) one can force
a 31-good wellorder of the reals over L, contradicting A3(S).

This suggests that the definability of the forcing iteration plays a role.
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Properness Without Elementaricity

@ Recall: P is proper iff for every M < Hy with P € M and every
p € PN M, there is g < p which is (M, P)-generic, i.e.

q - “M[G] is a (P N M)-generic extension of M.
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Properness Without Elementaricity

@ Recall: P is proper iff for every M < Hy with P € M and every
p € PN M, there is g < p which is (M, P)-generic, i.e.

q - “M[G] is a (P N M)-generic extension of M.

@ Idea: replace M < Hy by any countable transitive model M of (a
sufficient fragment of) ZFC.
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Properness Without Elementaricity

@ Recall: P is proper iff for every M < Hy with P € M and every
p € PN M, there is g < p which is (M, P)-generic, i.e.

q - “M[G] is a (P N M)-generic extension of M.

@ Idea: replace M < Hy by any countable transitive model M of (a
sufficient fragment of) ZFC.

@ But what does “"PN M" etc. mean when M is not elementary?
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“pelP,"p<q" and “pLlqg’ are 2% relations.

A forcing P is Suslin if elements of P are (coded by) reals and
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Suslin proper forcing

Definition
A forcing IP is Suslin if elements of IP are (coded by) reals and
“pe P “p<q" and “pLq" are 31 relations.

If P is Suslin and M is any countable model containing the parameters
defining P, then PM refers to the interpretation of P within M.
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Suslin proper forcing

Definition
A forcing IP is Suslin if elements of IP are (coded by) reals and
“pe P “p<q" and “pLq" are 31 relations.

If P is Suslin and M is any countable model containing the parameters
defining P, then PM refers to the interpretation of P within M.

Definition
A forcing notion P is Suslin proper if it is Suslin and for any countable
transitive model M containing the parameters of P, and every p € PM,
there is g < p which is (M, P)-generic, i.e.,

g - “M[G] is a PM-generic extension of M".
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Suslin™ proper forcing

Unfortunately, many standard forcing notions (in particular Sacks, Miller
and Laver) are not exactly Suslin, because | is only TI but not 3.
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Suslin™ proper forcing

Unfortunately, many standard forcing notions (in particular Sacks, Miller
and Laver) are not exactly Suslin, because | is only TI but not 3.

Solution: (Shelah; Goldstern) Replace “Suslin” by “Suslin™", where we
don't require L to be 31, Instead, we make sure that there is an
“effective” version of being an (M, P)-generic condition.

Technically, require that there exists a E%, (w + 1)-place relation epd(p;, q) such that if
epd(p;, q) holds then {p; | i < w} is predense below g and use epd to define an effectively

(M, P)-generic condition.
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Remarks about Suslin™

Remarks:
© Suslin ccc = Suslin proper = Suslin™ proper = proper.
@ All standard definable forcings used in the theory of the reals which
are known to be proper, are actually Suslin™ proper.

Jakob Kellner, Preserving non-null with Suslin®™ forcings, Arch. Math. Logic
(2006) 45:649-664.
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Complexity of the forcing relation

Lemma
Let P be Suslin™ proper and T a nice P-name for a real. Then for any
T1L-formula 6, the statement “p Ip O(7)" is also II, for all n > 2.

(Here we consider T as coded by a real).
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Complexity of the forcing relation

Lemma
Let P be Suslin™ proper and T a nice P-name for a real. Then for any
T1L-formula 6, the statement “p Ip O(7)" is also II, for all n > 2.

(Here we consider T as coded by a real).

Proof.

Induction on n, base case n = 2.

Let A be II3. Then p I A(7) iff for all countable transitive models M containing
p, 7 and all parameters of P, M |= p I- (7). This statement is IT}.

The rest follows by induction. L]

y
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lteration of Suslin™ proper forcing

Judah, Shelah and Goldstern developed the theory of iterations of Suslin
and Suslin™ proper forcings.
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lteration of Suslin™ proper forcing

Judah, Shelah and Goldstern developed the theory of iterations of Suslin
and Suslin™ proper forcings.

If P, = (Po, Qu | & < wi) is a countable support iteration of length wy,
where every iterand is Suslin™ proper, then:

@ P,-names for reals, and conditions p € P, are coded by reals.
Q@ "pcP,” and “p <, q" are IL}.

O Iffisa H% formula for n > 2, p € P, and 7 a nice P,-name for a
real, then “p I, 0(7)" is TI.
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Main Result

Theorem (Fischer-Friedman-Kh)
Ve = AL(S).

Proof.
Let A= {x| #(x)} = {x | =¢(x)} be A3}, w.l.o.g. parameters in V.

Let xo be first Sacks-generic over V. W.l.o.g. V[G.,] = #(x0). Then

V[G.,] = 3yf(x0, y) for some II} formula #. By properness, there is o < w; such that
y € V[G.], and by Shoenfield absoluteness V[G.] |= 6(xo,y). In V, let p be a
Sa-condition and 7 a nice S,-name for a real, such that

P |Fa 9()-(6(0)7 7’).
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Vo = AL(S). I
Then V[xo] = "“if we force with the remainder S1 o 2 S, along p interpreted using xo,
then 6(%o, 7[x0]) will hold".
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Main result

Theorem (Fischer-Friedman-Kh)
Ve = AL(S).

Proof.

Then V[x] = “if we force with the remainder S1,o 2 S, along p interpreted using xo,
then 0(%o, 7[x0]) will hold”.

Formally, let é(x) be a conjunction of the following statements:
@ ‘“p[x] is an S,-condition”,
@ “7[x] is a nice Sq-name for a real”, and
@ p[x] IFa O(x, T[x]).

Then V[xo] = 6(x0). Moreover, § is II3.
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Vo = AL(S). l

In V we have p(0) IFs é(kg(o)).
«0O0)>» «F»r «Z» « Q>
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Main result

Theorem (Fischer-Friedman-Kh)
Ve = AL(S).

Proof.
In V we have p(0) IFs O(Xc(0))-

Argue in V[xo]. It is known that if you add a Sacks-real you add a perfect set of
Sacks-reals, even below any perfect set. So there isa T < p(0) s.t.
Vx € [T] (x is S-generic over V).
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Main result

Theorem (Fischer-Friedman-Kh)
Ve = AL(S).

Proof.
In V we have p(0) IFs O(Xc(0))-

Argue in V[xo]. It is known that if you add a Sacks-real you add a perfect set of
Sacks-reals, even below any perfect set. So there isa T < p(0) s.t.

Vx € [T] (x is S-generic over V).

Vx € [TI(VIX] [ 0(x)),
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Main result

Theorem (Fischer-Friedman-Kh)
Ve = AL(S).

Proof.
In V we have p(0) IFs O(Xc(0))-

Argue in V[xo]. It is known that if you add a Sacks-real you add a perfect set of
Sacks-reals, even below any perfect set. So there isa T < p(0) s.t.

Vx € [T] (x is S-generic over V).

Vx € [T (VIX] = 0(x)),

Vx € [T] 0(x).
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Main result

Theorem (Fischer-Friedman-Kh)
Ve = AL(S).

Proof.
In V we have p(0) IFs O(Xc(0))-

Argue in V[xo]. It is known that if you add a Sacks-real you add a perfect set of
Sacks-reals, even below any perfect set. So there isa T < p(0) s.t.

Vx € [T] (x is S-generic over V).

Vx € [T (VIX] = 0(x)),

Vx € [T] 0(x).
Let ©(T) abbreviate “Vx € [T] f(x)". This is II3.
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Main result

Theorem (Fischer-Friedman-Kh)
Ve = AL(S).

Proof.
In V we have p(0) IFs O(Xc(0))-

Argue in V[xo]. It is known that if you add a Sacks-real you add a perfect set of
Sacks-reals, even below any perfect set. So there isa T < p(0) s.t.

Vx € [T] (x is S-generic over V).

Vx € [T (VIX] = 0(x)),

Vx € [T] 0(x).
Let ©(T) abbreviate “Vx € [T] f(x)". This is II3.
Then V[Gs] E©O(T) for 1 < 8 < ws.
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We claim V[G,,] E[T] C A.
«0>» «Fr «=)>» 4 .
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Main result

Theorem (Fischer-Friedman-Kh)
Ve = AL(S).

Proof.
We claim V[G,,] E[T] C A.

Pick z € [T], let B < wi be such that z € V[Gg]. Since V[Gg] = ©(T) in particular
V[Gg] = 0(z), so in particular

VI[Gs] [= plz] ks, 0(2,7[2]).

By genericity we may assume [ is sufficiently large so that p[z] is in the generic.
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Main result

Theorem (Fischer-Friedman-Kh)
Ve = AL(S).

~
Proof.
We claim V[G,,] E[T] C A.
Pick z € [T], let B < wi be such that z € V[Gg]. Since V[Gg] = ©(T) in particular
V[Gg] = 0(z), so in particular

VI[Gs] [= plz] ks, 0(2,7[2]).

By genericity we may assume [ is sufficiently large so that p[z] is in the generic.
It follows that V[Ggia] = 0(z, T[2][Gig11,8+a)]). hence V[Gpia] = ¢(2), and by
upwards-absoluteness, V[G.,] E ¢(z). O
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Generalizations

Let P be a forcing whose conditions are trees on 2“ or w* ordered by
inclusion.

Definition

A is P-measurable iff there is T € P such that [T]C Aor [T]NA= 2. J

The only essential property of Sacks forcing we used is: if you add a
Sacks-real you add a perfect set of Sacks-reals.
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Amoeba and Quasi-amoeba

Definition
Let P be a tree-like forcing notion, and AP another forcing. We say that

@ AP is a quasi-amoeba for PP if for every p € P and every AIP-generic
G, in V[G] there is a g < p such that

V[G] = Vx € [q] (x is P-generic over V).

@ AP is an amoeba for P if for every p € P and every AP-generic G, in
V[G] there is a ¢ < p such that for any larger model W D V[G],

W = Vx € [q] (x is P-generic over V).
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Examples

For Cohen and random, quasi-amoeba and amoeba are the same thing,
but in general they are different.

Yurii Khomskii (KGRC) Suslin Proper Forcing and Regularity Proper INFTY Final 22 /26



Examples

For Cohen and random, quasi-amoeba and amoeba are the same thing,
but in general they are different.

Examples:

@ Sacks forcing is a quasi-amoeba, but not an amoeba, for itself
(Brendle 1998).

@ Miller forcing is a quasi-amoeba, but not an amoeba, for itself
(Brendle 1998).

© Laver forcing is not a quasi-amoeba for itself (Brendle 1998), but
there are amoebas for Laver.

@ Mathias forcing is an amoeba for itself.
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General theorem

Theorem (Fischer-Friedman-Kh)

Suppose P is a tree-like forcing, AP a quasi-amoeba for P, and both P
and AP are Suslin® proper. Then V(F*AF)u |= AL(P).
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General theorem

Theorem (Fischer-Friedman-Kh)

Suppose P is a tree-like forcing, AP a quasi-amoeba for P, and both P
and AP are Suslin® proper. Then V(F*AF)u |= AL(P).

Applications:
o M = Miller forcing. VM«1 = AL(M).
e R = Mathias forcing. VR« |= Al(Ramsey) (Judah-Shelah).
o L = Laver forcing, AL = “amoeba for Laver”. V{I+Alu = AL(L).
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Mixing forcings

You can also mix other things in the iteration: e.g. if P is a tree-like

forcing and AP a P-quasi-amoeba, you can use any ws-iteration where P
and AP appear cofinally often, assuming that the iteration is sufficiently
“repetitive”, and all iterands are Suslin™ proper (this is essential, since

otherwise we could mix coding and obtain a model with Z%—good
wellorder!)
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Other generalizations

Zapletal's idealized framework: forcing with B(w*)// for a o-ideal | on the
reals.

Definition
A is [-measurable iff there is Borel set B ¢ | such that B C A or
BNA=o.

In this case, “amoeba” and “quasi-amoeba” means “adding a Borel
I-positive set of B(w*)/I-generic reals”. All the above results still apply,
assuming B(w®)/! is Suslin® proper.
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Application

AY(V) =————> A)(S)

AY(R) = A3(L) A(M)

A3(0)

C = Baire property; B = Lebesgue measure; S = Sacks-measurability; Ml = Miller-measurability;
L = Laver-measurability; V = Silver measurability; R = Ramsey property.
Theorem (Fischer-Friedman-Kh)

Each constellation of “true”/“false” assignments (18 possibilities ) to the above

statements not contradicting this diagram, is consistent r.t. ZFC or ZFC + inaccessible.
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Yurii Khomskii (KGRC)

Thank you!

Yurii Khomskii
yurii@deds.nl

W

And thanks to INFTY for supporting me!
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