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Purpose of this talk

Recently, in joint work with Vera Fischer and Sy Friedman, we made
some progress in separating various regularity properties on the ∆1

3,
Σ1

3 and ∆1
4 levels.

We constructed models by iterating “definable” forcing.

I will talk about the methods involved.
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Sample result

∆1
3(B) +3 ∆1

3(V) +3 ∆1
3(S)

∆1
3(R)

:B

+3 ∆1
3(L) +3 ∆1

3(M)

:B

∆1
3(C)

T\

KS

C = Baire property; B = Lebesgue measure; S = Sacks-measurability; M = Miller-measurability;

L = Laver-measurability; V = Silver measurability; R = Ramsey property.

Theorem (Fischer-Friedman-Kh)

Each constellation of “true”/“false” assignments (18 possibilities ) to the above

statements not contradicting this diagram, is consistent r.t. ZFC or ZFC + inaccessible.
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Sacks forcing

I will present just one of the methods, using Sacks forcing as a canonical
example.

Definition

Sacks forcing S is the partial order of perfect trees on 2<ω ordered by
inclusion.
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Sacks-measurability

Definition

A ⊆ 2ω is Sacks-measurable iff there is a perfect tree T ⊆ 2<ω such that
[T ] ⊆ A or [T ] ∩ A = ∅.

The usual definition is “below any Sacks-condition S there is a T ≤ S . . . ”, but this is

equivalent for sufficiently closed pointclasses Γ.
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Sacks-measurability depends on the complexity of A

Theorem (Bernstein 1908)

There exists a non Sacks-measurable set.

Proof.

Enumerate perfect trees {Tα | α < 2ℵ0} and “diagonalize” (Bernstein set).

Theorem (Suslin 1917)

All analytic sets are Sacks-measurable.

Modern proof.

Let A = {x | φ(x)}. Let ẋG be the name for the Sacks-generic real, and let T be
a Sacks-condition deciding φ(ẋG ), w.l.o.g. T 
 φ(ẋG ). Let M ≺ Hθ be a
countable elementary submodel with S,T ∈ M. Using a properness
argument find S ≤ T such that all x ∈ [S ] are Sacks-generic over M. So for all
x ∈ [S ], M[x ] |= φ(x), and by Σ1

1-absoluteness φ(x). Therefore [T ] ⊆ A.
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Beyond Σ1
1

Theorem (Gödel 1938)

L |= ¬∆1
2(S).

Proof.

Again diagonalize against all perfect trees, but use the Σ1
2-good

wellorder of the reals of L.
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Beyond Σ1
1

Theorem (Folklore)

V Sω1 |= ∆1
2(S).

Proof.

Let A = {x | φ(x)} = {x | ¬ψ(x)}, w.l.o.g. parameters in V . The statement

∀x (φ(x)↔ ¬ψ(x)) is Π1
3 hence downward absolute between V Sω1 and V S. In V

find Sacks-condition T forcing φ(ẋG ) or ψ(ẋG ), and proceed as before (and use

upwards Σ1
2-absoluteness from M[x ] to V Sω1 ).

Remark: It is not hard to do better and obtain V Sω1 |= Σ1
2(S).
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Beyond Σ1
2

Question

Can we use similar methods to obtain ∆1
3(S), Σ1

3(S) etc.?

Problems:

1 We used Shoenfield absoluteness and Σ1
1-absoluteness for

countable models.

2 Using coding techniques (e.g. “almost disjoint coding”) one can force
a Σ1

3-good wellorder of the reals over L, contradicting ∆1
3(S).

This suggests that the definability of the forcing iteration plays a role.
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Properness Without Elementaricity

Recall: P is proper iff for every M ≺ Hθ with P ∈ M and every
p ∈ P ∩M, there is q ≤ p which is (M,P)-generic, i.e.

q 
 “M[Ġ ] is a (P ∩M)-generic extension of M”.

Idea: replace M ≺ Hθ by any countable transitive model M of (a
sufficient fragment of) ZFC.

But what does “P ∩M” etc. mean when M is not elementary?
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Suslin proper forcing

Definition

A forcing P is Suslin if elements of P are (coded by) reals and
“p ∈ P”,“p ≤ q” and “p⊥q” are Σ1

1 relations.

If P is Suslin and M is any countable model containing the parameters
defining P, then PM refers to the interpretation of P within M.

Definition

A forcing notion P is Suslin proper if it is Suslin and for any countable
transitive model M containing the parameters of P, and every p ∈ PM ,
there is q ≤ p which is (M,P)-generic, i.e.,

q 
 “M[Ġ ] is a PM -generic extension of M”.
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Suslin+ proper forcing

Unfortunately, many standard forcing notions (in particular Sacks, Miller
and Laver) are not exactly Suslin, because ⊥ is only Π1

1 but not Σ1
1.

Solution: (Shelah; Goldstern) Replace “Suslin” by “Suslin+”, where we
don’t require ⊥ to be Σ1

1. Instead, we make sure that there is an
“effective” version of being an (M,P)-generic condition.

Technically, require that there exists a Σ1
2, (ω + 1)-place relation epd(pi , q) such that if

epd(pi , q) holds then {pi | i < ω} is predense below q and use epd to define an effectively

(M,P)-generic condition.
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Remarks about Suslin+

Remarks:

1 Suslin ccc ⇒ Suslin proper ⇒ Suslin+ proper ⇒ proper.

2 All standard definable forcings used in the theory of the reals which
are known to be proper, are actually Suslin+ proper.

Jakob Kellner, Preserving non-null with Suslin+ forcings, Arch. Math. Logic

(2006) 45:649–664.
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Complexity of the forcing relation

Lemma

Let P be Suslin+ proper and τ a nice P-name for a real. Then for any
Π1

n-formula θ, the statement “p 
P θ(τ)” is also Π1
n, for all n ≥ 2.

(Here we consider τ as coded by a real).

Proof.

Induction on n, base case n = 2.

Let θ be Π1
2. Then p 
 θ(τ) iff for all countable transitive models M containing

p, τ and all parameters of P, M |= p 
 θ(τ). This statement is Π1
2.

The rest follows by induction.
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Iteration of Suslin+ proper forcing

Judah, Shelah and Goldstern developed the theory of iterations of Suslin
and Suslin+ proper forcings.

If Pω1 = 〈Pα, Q̇α | α < ω1〉 is a countable support iteration of length ω1,
where every iterand is Suslin+ proper, then:

1 Pα-names for reals, and conditions p ∈ Pα, are coded by reals.

2 “p ∈ Pα” and “p ≤α q” are Π1
2.

3 If θ is a Π1
n formula for n ≥ 2, p ∈ Pα and τ a nice Pα-name for a

real, then “p 
α θ(τ)” is Π1
n.
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Main Result

Theorem (Fischer-Friedman-Kh)

V Sω1 |= ∆1
3(S).

Proof.

Let A = {x | φ(x)} = {x | ¬ψ(x)} be ∆1
3, w.l.o.g. parameters in V .

Let x0 be first Sacks-generic over V . W.l.o.g. V [Gω1 ] |= φ(x0). Then
V [Gω1 ] |= ∃yθ(x0, y) for some Π1

2 formula θ. By properness, there is α < ω1 such that
y ∈ V [Gα], and by Shoenfield absoluteness V [Gα] |= θ(x0, y). In V , let p be a
Sα-condition and τ a nice Sα-name for a real, such that

p 
α θ(ẋG(0), τ).
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Main result

Theorem (Fischer-Friedman-Kh)

V Sω1 |= ∆1
3(S).

Proof.

Then V [x0] |= “if we force with the remainder S1,α
∼= Sα along p interpreted using x0,

then θ(x̌0, τ [x0]) will hold”.

Formally, let θ̃(x) be a conjunction of the following statements:

“p[x ] is an Sα-condition”,

“τ [x ] is a nice Sα-name for a real”, and

p[x ] 
α θ(x̌ , τ [x ]).

Then V [x0] |= θ̃(x0). Moreover, θ̃ is Π1
2.

Yurii Khomskii (KGRC) Suslin Proper Forcing and Regularity Properties. INFTY Final 17 / 26



Main result

Theorem (Fischer-Friedman-Kh)

V Sω1 |= ∆1
3(S).

Proof.

Then V [x0] |= “if we force with the remainder S1,α
∼= Sα along p interpreted using x0,

then θ(x̌0, τ [x0]) will hold”.

Formally, let θ̃(x) be a conjunction of the following statements:

“p[x ] is an Sα-condition”,

“τ [x ] is a nice Sα-name for a real”, and

p[x ] 
α θ(x̌ , τ [x ]).

Then V [x0] |= θ̃(x0). Moreover, θ̃ is Π1
2.

Yurii Khomskii (KGRC) Suslin Proper Forcing and Regularity Properties. INFTY Final 17 / 26



Main result

Theorem (Fischer-Friedman-Kh)

V Sω1 |= ∆1
3(S).

Proof.

In V we have p(0) 
S θ̃(ẋG(0)).

Argue in V [x0]. It is known that if you add a Sacks-real you add a perfect set of
Sacks-reals, even below any perfect set. So there is a T ≤ p(0) s.t.
∀x ∈ [T ] (x is S-generic over V ).
∀x ∈ [T ] (V [x ] |= θ̃(x)),
∀x ∈ [T ] θ̃(x).

Let Θ(T ) abbreviate “∀x ∈ [T ] θ̃(x)”. This is Π1
2.

Then V [Gβ ] |= Θ(T ) for 1 ≤ β < ω1.
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Main result

Theorem (Fischer-Friedman-Kh)

V Sω1 |= ∆1
3(S).

Proof.

We claim V [Gω1 ] |= [T ] ⊆ A.

Pick z ∈ [T ], let β < ω1 be such that z ∈ V [Gβ ]. Since V [Gβ ] |= Θ(T ) in particular
V [Gβ ] |= θ̃(z), so in particular

V [Gβ ] |= p[z] 
Sα θ(ž , τ [z]).

By genericity we may assume β is sufficiently large so that p[z] is in the generic.

It follows that V [Gβ+α] |= θ(z , τ [z][G[β+1,β+α)]), hence V [Gβ+α] |= φ(z), and by
upwards-absoluteness, V [Gω1 ] |= φ(z).
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Generalizations

Let P be a forcing whose conditions are trees on 2ω or ωω ordered by
inclusion.

Definition

A is P-measurable iff there is T ∈ P such that [T ] ⊆ A or [T ] ∩ A = ∅.

The only essential property of Sacks forcing we used is: if you add a
Sacks-real you add a perfect set of Sacks-reals.
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Amoeba and Quasi-amoeba

Definition

Let P be a tree-like forcing notion, and AP another forcing. We say that

1 AP is a quasi-amoeba for P if for every p ∈ P and every AP-generic
G , in V [G ] there is a q ≤ p such that

V [G ] |= ∀x ∈ [q] (x is P-generic over V ).

2 AP is an amoeba for P if for every p ∈ P and every AP-generic G , in
V [G ] there is a q ≤ p such that for any larger model W ⊇ V [G ],

W |= ∀x ∈ [q] (x is P-generic over V ).
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Examples

For Cohen and random, quasi-amoeba and amoeba are the same thing,
but in general they are different.

Examples:

1 Sacks forcing is a quasi-amoeba, but not an amoeba, for itself
(Brendle 1998).

2 Miller forcing is a quasi-amoeba, but not an amoeba, for itself
(Brendle 1998).

3 Laver forcing is not a quasi-amoeba for itself (Brendle 1998), but
there are amoebas for Laver.

4 Mathias forcing is an amoeba for itself.
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General theorem

Theorem (Fischer-Friedman-Kh)

Suppose P is a tree-like forcing, AP a quasi-amoeba for P, and both P
and AP are Suslin+ proper. Then V (P∗AP)ω1 |= ∆1

3(P).

Applications:

M = Miller forcing. VMω1 |= ∆1
3(M).

R = Mathias forcing. V Rω1 |= ∆1
3(Ramsey) (Judah-Shelah).

L = Laver forcing, AL = “amoeba for Laver”. V (L∗AL)ω1 |= ∆1
3(L).
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Mixing forcings

You can also mix other things in the iteration: e.g. if P is a tree-like
forcing and AP a P-quasi-amoeba, you can use any ω1-iteration where P
and AP appear cofinally often, assuming that the iteration is sufficiently
“repetitive”, and all iterands are Suslin+ proper (this is essential, since
otherwise we could mix coding and obtain a model with Σ1

3-good
wellorder!)
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Other generalizations

Zapletal’s idealized framework: forcing with B(ωω)/I for a σ-ideal I on the
reals.

Definition

A is I -measurable iff there is Borel set B /∈ I such that B ⊆ A or
B ∩ A = ∅.

In this case, “amoeba” and “quasi-amoeba” means “adding a Borel
I -positive set of B(ωω)/I -generic reals”. All the above results still apply,
assuming B(ωω)/I is Suslin+ proper.
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Application

∆1
3(B) +3 ∆1

3(V) +3 ∆1
3(S)

∆1
3(R)

:B

+3 ∆1
3(L) +3 ∆1

3(M)

:B

∆1
3(C)

T\

KS

C = Baire property; B = Lebesgue measure; S = Sacks-measurability; M = Miller-measurability;

L = Laver-measurability; V = Silver measurability; R = Ramsey property.

Theorem (Fischer-Friedman-Kh)

Each constellation of “true”/“false” assignments (18 possibilities ) to the above

statements not contradicting this diagram, is consistent r.t. ZFC or ZFC + inaccessible.
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Thank you!
Yurii Khomskii

yurii@deds.nl

And thanks to INFTY for supporting me!
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