Suslin Proper Forcing and Regularity Properties.

Yurii Khomskii KGRC, Vienna

joint with Vera Fischer and Sy Friedman

Final INFTY Conference, Bonn, 4 March 2014

・ロト ・同ト ・ヨト ・

- Recently, in joint work with Vera Fischer and Sy Friedman, we made some progress in separating various regularity properties on the Δ¹₃, Σ¹₃ and Δ¹₄ levels.
- We constructed models by iterating "definable" forcing.
- I will talk about the methods involved.

Sample result

$$\label{eq:scalar} \begin{split} \mathbb{C} &= \mathsf{Baire \ property;} \ \mathbb{B} = \mathsf{Lebesgue \ measure;} \ \mathbb{S} = \mathsf{Sacks-measurability;} \ \mathbb{M} = \mathsf{Miller-measurability;} \\ \mathbb{L} &= \mathsf{Laver-measurability;} \ \mathbb{V} = \mathsf{Silver \ measurability;} \ \mathbb{R} = \mathsf{Ramsey \ property.} \end{split}$$

Theorem (Fischer-Friedman-Kh)

Each constellation of "true"/"false" assignments (18 possibilities) to the above statements not contradicting this diagram, is consistent r.t. ZFC or ZFC + inaccessible.

Yurii Khomskii (KGRC)

Suslin Proper Forcing and Regularity Proper

INFTY Final 3 / 26

▲ 同 ▶ → 三 ▶

SQA

I will present just **one** of the methods, using **Sacks forcing** as a canonical example.

Definition

Sacks forcing $\mathbb S$ is the partial order of perfect trees on $2^{<\omega}$ ordered by inclusion.

Definition

 $A \subseteq 2^{\omega}$ is **Sacks-measurable** iff there is a perfect tree $T \subseteq 2^{<\omega}$ such that $[T] \subseteq A$ or $[T] \cap A = \emptyset$.

The usual definition is "below any Sacks-condition S there is a $T \leq S \dots$ ", but this is equivalent for sufficiently closed pointclasses Γ .

= 990

Sacks-measurability depends on the complexity of A

Theorem (Bernstein 1908)

There exists a non Sacks-measurable set.

Proof.

Enumerate perfect trees $\{T_{\alpha} \mid \alpha < 2^{\aleph_0}\}$ and "diagonalize" (Bernstein set).

Sacks-measurability depends on the complexity of A

Theorem (Bernstein 1908)

There exists a non Sacks-measurable set.

Proof.

Enumerate perfect trees $\{T_{\alpha} \mid \alpha < 2^{\aleph_0}\}$ and "diagonalize" (Bernstein set).

Theorem (Suslin 1917)

All analytic sets are Sacks-measurable.

Modern proof.

Let $A = \{x \mid \phi(x)\}$. Let \dot{x}_G be the name for the Sacks-generic real, and let T be a Sacks-condition deciding $\phi(\dot{x}_G)$, w.l.o.g. $T \Vdash \phi(\dot{x}_G)$. Let $M \prec \mathcal{H}_{\theta}$ be a **countable elementary submodel** with $\mathbb{S}, T \in M$. Using a **properness argument** find $S \leq T$ such that all $x \in [S]$ are Sacks-generic over M. So for all $x \in [S], M[x] \models \phi(x)$, and by Σ_1^1 -absoluteness $\phi(x)$. Therefore $[T] \subseteq A$.

Theorem (Gödel 1938)

 $L \models \neg \Delta_2^1(\mathbb{S}).$

Proof.

Again diagonalize against all perfect trees, but use the Σ_2^1 -good wellorder of the reals of *L*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Folklore)

 $V^{\mathbb{S}_{\omega_1}} \models \mathbf{\Delta}^1_2(\mathbb{S}).$

Proof.

Let $A = \{x \mid \phi(x)\} = \{x \mid \neg \psi(x)\}$, w.l.o.g. parameters in V. The statement $\forall x \ (\phi(x) \leftrightarrow \neg \psi(x))$ is Π_3^1 hence downward absolute between $V^{\mathbb{S}_{\omega_1}}$ and $V^{\mathbb{S}}$. In V find Sacks-condition T forcing $\phi(\dot{x}_G)$ or $\psi(\dot{x}_G)$, and proceed as before (and use **upwards** Σ_2^1 -**absoluteness** from M[x] to $V^{\mathbb{S}_{\omega_1}}$).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Theorem (Folklore)

 $V^{\mathbb{S}_{\omega_1}}\models \mathbf{\Delta}^1_2(\mathbb{S}).$

Proof.

Let $A = \{x \mid \phi(x)\} = \{x \mid \neg \psi(x)\}$, w.l.o.g. parameters in V. The statement $\forall x \ (\phi(x) \leftrightarrow \neg \psi(x))$ is Π_3^1 hence downward absolute between $V^{\mathbb{S}_{\omega_1}}$ and $V^{\mathbb{S}}$. In V find Sacks-condition T forcing $\phi(\dot{x}_G)$ or $\psi(\dot{x}_G)$, and proceed as before (and use **upwards** Σ_2^1 -**absoluteness** from M[x] to $V^{\mathbb{S}_{\omega_1}}$).

Remark: It is not hard to do better and obtain $V^{\mathbb{S}_{\omega_1}} \models \Sigma_2^1(\mathbb{S})$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Question

Can we use similar methods to obtain $\Delta^1_3(\mathbb{S})$, $\Sigma^1_3(\mathbb{S})$ etc.?

Problems:

- We used Shoenfield absoluteness and Σ_1^1 -absoluteness for countable models.
- Using coding techniques (e.g. "almost disjoint coding") one can force a Σ₃¹-good wellorder of the reals over L, contradicting Δ₃¹(S).

9 / 26

This suggests that the **definability** of the forcing iteration plays a role.

• Recall: \mathbb{P} is **proper** iff for every $M \prec \mathcal{H}_{\theta}$ with $\mathbb{P} \in M$ and every $p \in \mathbb{P} \cap M$, there is $q \leq p$ which is (M, \mathbb{P}) -generic, i.e.

 $q \Vdash ``M[G]$ is a $(\mathbb{P} \cap M)$ -generic extension of M".

SQA

• Recall: \mathbb{P} is **proper** iff for every $M \prec \mathcal{H}_{\theta}$ with $\mathbb{P} \in M$ and every $p \in \mathbb{P} \cap M$, there is $q \leq p$ which is (M, \mathbb{P}) -generic, i.e.

 $q \Vdash ``M[G]$ is a $(\mathbb{P} \cap M)$ -generic extension of M".

Idea: replace M ≺ H_θ by any countable transitive model M of (a sufficient fragment of) ZFC.

• Recall: \mathbb{P} is **proper** iff for every $M \prec \mathcal{H}_{\theta}$ with $\mathbb{P} \in M$ and every $p \in \mathbb{P} \cap M$, there is $q \leq p$ which is (M, \mathbb{P}) -generic, i.e.

 $q \Vdash ``M[G]$ is a $(\mathbb{P} \cap M)$ -generic extension of M".

- Idea: replace M ≺ H_θ by any countable transitive model M of (a sufficient fragment of) ZFC.
- But what does " $\mathbb{P} \cap M$ " etc. mean when M is not elementary?

▲母▶ ▲ヨ▶ ▲ヨ▶ ヨー シタゆ

Suslin proper forcing

Definition

A forcing \mathbb{P} is **Suslin** if elements of \mathbb{P} are (coded by) reals and " $p \in \mathbb{P}$ ", " $p \leq q$ " and " $p \perp q$ " are Σ_1^1 relations.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ()

Definition

A forcing \mathbb{P} is **Suslin** if elements of \mathbb{P} are (coded by) reals and " $p \in \mathbb{P}$ ", " $p \leq q$ " and " $p \perp q$ " are Σ_1^1 relations.

If \mathbb{P} is Suslin and M is any countable model containing the parameters defining \mathbb{P} , then \mathbb{P}^M refers to the **interpretation** of \mathbb{P} within M.

▶ ∃ √Q()

Definition

A forcing \mathbb{P} is **Suslin** if elements of \mathbb{P} are (coded by) reals and " $p \in \mathbb{P}$ ", " $p \leq q$ " and " $p \perp q$ " are Σ_1^1 relations.

If \mathbb{P} is Suslin and M is any countable model containing the parameters defining \mathbb{P} , then \mathbb{P}^M refers to the **interpretation** of \mathbb{P} within M.

Definition

A forcing notion \mathbb{P} is **Suslin proper** if it is Suslin and for **any** countable transitive model M containing the parameters of \mathbb{P} , and every $p \in \mathbb{P}^{M}$, there is $q \leq p$ which is (M, \mathbb{P}) -generic, i.e., $q \Vdash "M[G]$ is a \mathbb{P}^{M} -generic extension of M".

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Unfortunately, many standard forcing notions (in particular Sacks, Miller and Laver) are not exactly Suslin, because \perp is only Π_1^1 but not Σ_1^1 .

Unfortunately, many standard forcing notions (in particular Sacks, Miller and Laver) are not **exactly** Suslin, because \perp is only Π_1^1 but not Σ_1^1 .

Solution: (Shelah; Goldstern) Replace "Suslin" by "Suslin⁺", where we don't require \perp to be Σ_1^1 . Instead, we make sure that there is an "effective" version of being an (M, \mathbb{P}) -generic condition.

Technically, require that there exists a Σ_2^1 , $(\omega + 1)$ -place relation $\operatorname{epd}(p_i, q)$ such that if $\operatorname{epd}(p_i, q)$ holds then $\{p_i \mid i < \omega\}$ is predense below q and use epd to define an effectively (M, \mathbb{P}) -generic condition.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Remarks:

- Suslin ccc \Rightarrow Suslin proper \Rightarrow Suslin⁺ proper \Rightarrow proper.
- All standard definable forcings used in the theory of the reals which are known to be proper, are actually Suslin⁺ proper.

Jakob Kellner, Preserving non-null with Suslin⁺ forcings, Arch. Math. Logic (2006) 45:649–664.

Complexity of the forcing relation

Lemma

Let \mathbb{P} be Suslin⁺ proper and τ a nice \mathbb{P} -name for a real. Then for any Π_n^1 -formula θ , the statement " $p \Vdash_{\mathbb{P}} \theta(\tau)$ " is also Π_n^1 , for all $n \ge 2$.

(Here we consider τ as coded by a real).

Complexity of the forcing relation

Lemma

Let \mathbb{P} be Suslin⁺ proper and τ a nice \mathbb{P} -name for a real. Then for any Π^1_n -formula θ , the statement " $p \Vdash_{\mathbb{P}} \theta(\tau)$ " is also Π^1_n , for all $n \ge 2$.

(Here we consider τ as coded by a real).

Proof.

Induction on *n*, base case n = 2.

Let θ be Π_2^1 . Then $p \Vdash \theta(\tau)$ iff for all countable transitive models M containing p, τ and all parameters of \mathbb{P} , $M \models p \Vdash \theta(\tau)$. This statement is Π_2^1 .

The rest follows by induction.

・ロト ・ 同ト ・ ヨト ・ ヨ・

Judah, Shelah and Goldstern developed the theory of iterations of Suslin and ${\rm Suslin}^+$ proper forcings.

< □ > < 同 > < 回 >

Judah, Shelah and Goldstern developed the theory of **iterations** of Suslin and Suslin⁺ proper forcings.

If $\mathbb{P}_{\omega_1} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} \mid \alpha < \omega_1 \rangle$ is a countable support iteration **of length** ω_1 , where every iterand is Suslin⁺ proper, then:

Q \mathbb{P}_{α} -names for reals, and conditions $p \in \mathbb{P}_{\alpha}$, are coded by reals.

② "
$$p\in \mathbb{P}_{lpha}$$
" and " $p\leq_{lpha}q$ " are Π^1_2 .

If θ is a Π¹_n formula for n ≥ 2, p ∈ P_α and τ a nice P_α-name for a real, then "p ⊨_α θ(τ)" is Π¹_n.

Theorem (Fischer-Friedman-Kh)

Yurii Khomskii (KGRC)

 $V^{\mathbb{S}_{\omega_1}} \models \mathbf{\Delta}_3^1(\mathbb{S}).$

596

Theorem (Fischer-Friedman-Kh)

 $V^{\mathbb{S}_{\omega_1}} \models \Delta^1_3(\mathbb{S}).$

Proof.

Yurii Khomskii (KGRC) Suslin Proper Forcing and Regularity Proper

◆□▶ ◆□▶ ◆臣▶ ◆臣

Theorem (Fischer-Friedman-Kh)

 $V^{\mathbb{S}_{\omega_1}} \models \mathbf{\Delta}_3^1(\mathbb{S}).$

Proof.

Let $A = \{x \mid \phi(x)\} = \{x \mid \neg \psi(x)\}$ be Δ_3^1 , w.l.o.g. parameters in V.

Let x_0 be first Sacks-generic over V. W.l.o.g. $V[G_{\omega_1}] \models \phi(x_0)$. Then $V[G_{\omega_1}] \models \exists y \theta(x_0, y)$ for some Π_2^1 formula θ . By properness, there is $\alpha < \omega_1$ such that $y \in V[G_{\alpha}]$, and by Shoenfield absoluteness $V[G_{\alpha}] \models \theta(x_0, y)$. In V, let p be a \mathbb{S}_{α} -condition and τ a nice \mathbb{S}_{α} -name for a real, such that

 $p \Vdash_{\alpha} \theta(\dot{x}_{G(0)}, \tau).$

Theorem (Fischer-Friedman-Kh)

 $V^{\mathbb{S}_{\omega_1}} \models \mathbf{\Delta}_3^1(\mathbb{S}).$

Proof.

Then $V[x_0] \models$ "if we force with the remainder $\mathbb{S}_{1,\alpha} \cong \mathbb{S}_{\alpha}$ along p interpreted using x_0 , then $\theta(\check{x}_0, \tau[x_0])$ will hold".

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Fischer-Friedman-Kh)

 $V^{\mathbb{S}_{\omega_1}} \models \mathbf{\Delta}_3^1(\mathbb{S}).$

Proof.

Then $V[x_0] \models$ "if we force with the remainder $\mathbb{S}_{1,\alpha} \cong \mathbb{S}_{\alpha}$ along *p* interpreted using x_0 , then $\theta(\check{x}_0, \tau[x_0])$ will hold".

Formally, let $\tilde{\theta}(x)$ be a conjunction of the following statements:

- "p[x] is an \mathbb{S}_{α} -condition",
- " $\tau[x]$ is a nice \mathbb{S}_{α} -name for a real", and
- $p[x] \Vdash_{\alpha} \theta(\check{x}, \tau[x]).$

Then $V[x_0] \models \tilde{\theta}(x_0)$. Moreover, $\tilde{\theta}$ is Π^1_2 .

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q ()

Theorem (Fischer-Friedman-Kh)

 $V^{\mathbb{S}_{\omega_1}} \models \mathbf{\Delta}_3^1(\mathbb{S}).$

Proof.

In V we have $p(0) \Vdash_{\mathbb{S}} \tilde{\theta}(\dot{x}_{G(0)})$.

590

イロト イポト イヨト イヨ

Theorem (Fischer-Friedman-Kh)

 $V^{\mathbb{S}_{\omega_1}} \models \Delta^1_3(\mathbb{S}).$

Proof.

In V we have $p(0) \Vdash_{\mathbb{S}} \tilde{\theta}(\dot{x}_{G(0)})$.

Argue in $V[x_0]$. It is known that if you add a Sacks-real you add a perfect set of Sacks-reals, even below any perfect set. So there is a T < p(0) s.t. $\forall x \in [T] (x \text{ is } \mathbb{S}\text{-generic over } V).$

| 4 同 🕨 🖌 4 目 🖌 4 目 🖉

nac

Theorem (Fischer-Friedman-Kh)

 $V^{\mathbb{S}_{\omega_1}} \models \mathbf{\Delta}_3^1(\mathbb{S}).$

Proof.

In V we have $p(0) \Vdash_{\mathbb{S}} \tilde{\theta}(\dot{x}_{G(0)})$.

Argue in $V[x_0]$. It is known that if you add a Sacks-real you add a perfect set of Sacks-reals, even below any perfect set. So there is a $T \leq p(0)$ s.t. $\forall x \in [T] (x \text{ is } \mathbb{S}\text{-generic over } V)$. $\forall x \in [T] (V[x] \models \tilde{\theta}(x))$,

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Theorem (Fischer-Friedman-Kh)

 $V^{\mathbb{S}_{\omega_1}} \models \Delta^1_3(\mathbb{S}).$

Proof.

In V we have $p(0) \Vdash_{\mathbb{S}} \tilde{\theta}(\dot{x}_{G(0)})$.

Argue in $V[x_0]$. It is known that if you add a Sacks-real you add a perfect set of Sacks-reals, even below any perfect set. So there is a T < p(0) s.t. $\forall x \in [T] (x \text{ is } \mathbb{S}\text{-generic over } V).$ $\forall x \in [T] (V[x] \models \tilde{\theta}(x)),$ $\forall x \in [T] \, \tilde{\theta}(x).$

| 4 同 🕨 🖌 4 目 🖌 4 目 🖉

nac

Theorem (Fischer-Friedman-Kh)

 $V^{\mathbb{S}_{\omega_1}} \models \mathbf{\Delta}_3^1(\mathbb{S}).$

Proof.

In V we have $p(0) \Vdash_{\mathbb{S}} \tilde{\theta}(\dot{x}_{G(0)})$.

Argue in $V[x_0]$. It is known that if you add a Sacks-real you add a perfect set of Sacks-reals, even below any perfect set. So there is a $T \le p(0)$ s.t. $\forall x \in [T] (x \text{ is } \mathbb{S}\text{-generic over } V)$. $\forall x \in [T] (V[x] \models \tilde{\theta}(x)),$ $\forall x \in [T] \tilde{\theta}(x).$

Let $\Theta(T)$ abbreviate " $\forall x \in [T] \tilde{\theta}(x)$ ". This is Π_2^1 .

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Theorem (Fischer-Friedman-Kh)

 $V^{\mathbb{S}_{\omega_1}} \models \mathbf{\Delta}_3^1(\mathbb{S}).$

Proof.

In V we have $p(0) \Vdash_{\mathbb{S}} \tilde{\theta}(\dot{x}_{G(0)})$.

Argue in $V[x_0]$. It is known that if you add a Sacks-real you add a perfect set of Sacks-reals, even below any perfect set. So there is a $T \leq p(0)$ s.t. $\forall x \in [T] (x \text{ is } \mathbb{S}\text{-generic over } V)$. $\forall x \in [T] (V[x] \models \tilde{\theta}(x))$, $\forall x \in [T] \tilde{\theta}(x)$. Let $\Theta(T)$ abbreviate " $\forall x \in [T] \tilde{\theta}(x)$ ". This is Π_2^1 . Then $V[G_\beta] \models \Theta(T)$ for $1 \leq \beta < \omega_1$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem (Fischer-Friedman-Kh)

 $V^{\mathbb{S}_{\omega_1}} \models \mathbf{\Delta}_3^1(\mathbb{S}).$

Proof.

We claim $V[G_{\omega_1}] \models [T] \subseteq A$.

Yurii Khomskii (KGRC)

900

イロト イポト イヨト イヨ

Theorem (Fischer-Friedman-Kh)

 $V^{\mathbb{S}_{\omega_1}} \models \mathbf{\Delta}_3^1(\mathbb{S}).$

Proof.

We claim $V[G_{\omega_1}] \models [T] \subseteq A$.

Pick $z \in [T]$, let $\beta < \omega_1$ be such that $z \in V[G_\beta]$. Since $V[G_\beta] \models \Theta(T)$ in particular $V[G_\beta] \models \tilde{\theta}(z)$, so in particular

 $V[G_{\beta}] \models p[z] \Vdash_{\mathbb{S}_{\alpha}} \theta(\check{z}, \tau[z]).$

By genericity we may assume β is sufficiently large so that p[z] is in the generic.

- 4 同 1 - 4 回 1 - 4 回

nac

19 / 26

► Ξ

Theorem (Fischer-Friedman-Kh)

 $V^{\mathbb{S}_{\omega_1}} \models \mathbf{\Delta}_3^1(\mathbb{S}).$

Proof.

We claim $V[G_{\omega_1}] \models [T] \subseteq A$.

Pick $z \in [T]$, let $\beta < \omega_1$ be such that $z \in V[G_\beta]$. Since $V[G_\beta] \models \Theta(T)$ in particular $V[G_\beta] \models \tilde{\theta}(z)$, so in particular

$$V[G_{\beta}] \models p[z] \Vdash_{\mathbb{S}_{\alpha}} \theta(\check{z}, \tau[z]).$$

By genericity we may assume β is sufficiently large so that p[z] is in the generic.

It follows that $V[G_{\beta+\alpha}] \models \theta(z, \tau[z][G_{[\beta+1,\beta+\alpha)}])$, hence $V[G_{\beta+\alpha}] \models \phi(z)$, and by upwards-absoluteness, $V[G_{\omega_1}] \models \phi(z)$.

Let $\mathbb P$ be a forcing whose conditions are trees on 2^ω or ω^ω ordered by inclusion.

Definition

A is \mathbb{P} -measurable iff there is $T \in \mathbb{P}$ such that $[T] \subseteq A$ or $[T] \cap A = \emptyset$.

The only essential property of Sacks forcing we used is: if you add a Sacks-real you add a perfect set of Sacks-reals.

Amoeba and Quasi-amoeba

Definition

Let $\mathbb P$ be a tree-like forcing notion, and $\mathbb A\mathbb P$ another forcing. We say that

▲ P is a quasi-amoeba for P if for every p ∈ P and every AP-generic G, in V[G] there is a q ≤ p such that

 $V[G] \models \forall x \in [q] (x \text{ is } \mathbb{P}\text{-generic over } V).$

② AP is an amoeba for P if for every p ∈ P and every AP-generic G, in V[G] there is a q ≤ p such that for any larger model W ⊇ V[G],

 $W \models \forall x \in [q] (x \text{ is } \mathbb{P}\text{-generic over } V).$

For Cohen and random, **quasi-amoeba** and **amoeba** are the same thing, but in general they are different.

イロト イポト イヨト イヨ

3

200

For Cohen and random, **quasi-amoeba** and **amoeba** are the same thing, but in general they are different.

Examples:

- Sacks forcing is a quasi-amoeba, but not an amoeba, for itself (Brendle 1998).
- Miller forcing is a quasi-amoeba, but not an amoeba, for itself (Brendle 1998).
- Superior of the second seco
- Mathias forcing is an amoeba for itself.

Theorem (Fischer-Friedman-Kh)

Suppose \mathbb{P} is a tree-like forcing, \mathbb{AP} a quasi-amoeba for \mathbb{P} , and both \mathbb{P} and \mathbb{AP} are Suslin⁺ proper. Then $V^{(\mathbb{P}*\mathbb{AP})_{\omega_1}} \models \Delta_3^1(\mathbb{P})$.

Theorem (Fischer-Friedman-Kh)

Suppose \mathbb{P} is a tree-like forcing, \mathbb{AP} a quasi-amoeba for \mathbb{P} , and both \mathbb{P} and \mathbb{AP} are Suslin⁺ proper. Then $V^{(\mathbb{P}*\mathbb{AP})_{\omega_1}} \models \Delta^1_3(\mathbb{P})$.

Applications:

- $\mathbb{M} =$ Miller forcing. $V^{\mathbb{M}_{\omega_1}} \models \Delta^1_3(\mathbb{M}).$
- \mathbb{R} = Mathias forcing. $V^{\mathbb{R}_{\omega_1}} \models \Delta^1_3(\mathsf{Ramsey})$ (Judah-Shelah).
- $\mathbb{L} =$ Laver forcing, $\mathbb{AL} =$ "amoeba for Laver". $V^{(\mathbb{L}*\mathbb{AL})_{\omega_1}} \models \Delta^1_3(\mathbb{L})$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ○ ○ ○

You can also mix other things in the iteration: e.g. if \mathbb{P} is a tree-like forcing and \mathbb{AP} a \mathbb{P} -quasi-amoeba, you can use any ω_1 -iteration where \mathbb{P} and \mathbb{AP} appear cofinally often, assuming that the iteration is sufficiently "repetitive", and all iterands are **Suslin**⁺ proper (this is essential, since otherwise we could mix coding and obtain a model with Σ_3^1 -good wellorder!)

Zapletal's idealized framework: forcing with $\mathcal{B}(\omega^{\omega})/I$ for a σ -ideal I on the reals.

Definition

A is *I*-measurable iff there is Borel set $B \notin I$ such that $B \subseteq A$ or $B \cap A = \emptyset$.

In this case, "amoeba" and "quasi-amoeba" means "adding a Borel *I*-positive set of $\mathcal{B}(\omega^{\omega})/I$ -generic reals". All the above results still apply, assuming $\mathcal{B}(\omega^{\omega})/I$ is Suslin⁺ proper.

- 4 同 ト 4 三 ト - 三 - りくや

Application

$$\label{eq:scalar} \begin{split} \mathbb{C} &= \mathsf{Baire \ property;} \ \mathbb{B} = \mathsf{Lebesgue \ measure;} \ \mathbb{S} = \mathsf{Sacks-measurability;} \ \mathbb{M} = \mathsf{Miller-measurability;} \\ \mathbb{L} &= \mathsf{Laver-measurability;} \ \mathbb{V} = \mathsf{Silver \ measurability;} \ \mathbb{R} = \mathsf{Ramsey \ property.} \end{split}$$

Theorem (Fischer-Friedman-Kh)

Each constellation of "true"/"false" assignments (18 possibilities) to the above statements not contradicting this diagram, is consistent r.t. ZFC or ZFC + inaccessible.

Yurii Khomskii (KGRC)

Suslin Proper Forcing and Regularity Proper

INFTY Final 26 / 26

SQA

Thank you!

Yurii Khomskii yurii@deds.nl

And thanks to INFTY for supporting me!

Yurii Khomskii (KGRC)

Suslin Proper Forcing and Regularity Proper

INFTY Final 27 / 26

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○ ○