MAD families and the projective hierarchy

Yurii Khomskii University of Amsterdam

Joint work with Jörg Brendle (Kobe University, Japan)

ASL North American Meeting University of California Berkeley, 25 March 2011

Definition

1 Two sets $A, B \in [\omega]^{\omega}$ are called *almost disjoint* (a.d.) if $A \cap B$ is finite.

Definition

- Two sets $A, B \in [\omega]^{\omega}$ are called *almost disjoint* (a.d.) if $A \cap B$ is finite.
- **2** A family $\mathcal{A} \subseteq [\omega]^{\omega}$ is called *almost disjoint* (a.d.) if

 $\forall A, B \in \mathcal{A} (A \text{ and } B \text{ are a.d.})$

Definition

- Two sets $A, B \in [\omega]^{\omega}$ are called *almost disjoint* (a.d.) if $A \cap B$ is finite.
- **2** A family $\mathcal{A} \subseteq [\omega]^{\omega}$ is called *almost disjoint* (a.d.) if
 - $\forall A, B \in \mathcal{A} \ (A \ \mathsf{and} \ B \ \mathsf{are} \ \mathsf{a.d.})$
- **3** A family $A \subseteq [\omega]^{\omega}$ is called *maximal almost disjoint* (MAD) if it is an infinite a.d. family and maximal with this property.

Definition

- Two sets $A, B \in [\omega]^{\omega}$ are called *almost disjoint* (a.d.) if $A \cap B$ is finite.
- **3** A family $\mathcal{A} \subseteq [\omega]^{\omega}$ is called *almost disjoint* (a.d.) if $\forall A, B \in \mathcal{A}$ (A and B are a.d.)
- **3** A family $\mathcal{A} \subseteq [\omega]^{\omega}$ is called *maximal almost disjoint* (MAD) if it is an infinite a.d. family and maximal with this property.

MAD families can be constucted in ZFC using a well-ordering of $[\omega]^{\omega}$.

Via $[\omega]^{\omega} \cong 2^{\omega}$, we can talk about the complexity MAD families (descriptive set theory).

Via $[\omega]^{\omega} \cong 2^{\omega}$, we can talk about the complexity MAD families (descriptive set theory).

Theorem (Mathias 1977)

There is no analytic MAD family.

Via $[\omega]^{\omega} \cong 2^{\omega}$, we can talk about the complexity MAD families (descriptive set theory).

Theorem (Mathias 1977)

There is no analytic MAD family.

Fact

If V=L then there is a $\mathbf{\Sigma}_2^1$ MAD family (use the $\mathbf{\Sigma}_2^1$ well-ordering of $[\omega]^\omega$).

Via $[\omega]^{\omega} \cong 2^{\omega}$, we can talk about the complexity MAD families (descriptive set theory).

Theorem (Mathias 1977)

There is no analytic MAD family.

Fact

If V = L then there is a Σ_2^1 MAD family (use the Σ_2^1 well-ordering of $[\omega]^{\omega}$).

Theorem (Miller 1989)

If V = L then there is a Π_1^1 MAD family.

Larger models

Question: are there Π_1^1/Σ_2^1 MAD families in models larger than L?

Larger models

Question: are there Π_1^1/Σ_2^1 MAD families in models larger than L?

Definition

Let $\mathbb P$ be a (proper) forcing. A MAD family $\mathcal A$ is called $\mathbb P$ -indestructible if it remains a MAD family in $\mathsf V^\mathbb P$.

Preservation of Σ_2^1 definition

Fact

If $A \in L$ is a Σ_2^1 \mathbb{P} -indestructible MAD family, then in $L^{\mathbb{P}}$ it is still Σ_2^1 .

Preservation of Σ_2^1 definition

Fact

If $A \in L$ is a Σ_2^1 \mathbb{P} -indestructible MAD family, then in $L^{\mathbb{P}}$ it is still Σ_2^1 .

Proof.

If $\phi(x)$ is Σ_2^1 and defines \mathcal{A} in L, then " $\phi(x) \wedge x \in L$ " is also Σ_2^1 and defines \mathcal{A} in $L^{\mathbb{P}}$.

Preservation of Π_1^1 definition

Fact (Friedman & Zdomskyy 2010)

If $A \in L$ is a Π^1_1 \mathbb{P} -indestructible MAD family, then in $L^{\mathbb{P}}$ it is still Π^1_1 .

Preservation of Π_1^1 definition

Fact (Friedman & Zdomskyy 2010)

If $A \in L$ is a Π^1_1 \mathbb{P} -indestructible MAD family, then in $L^{\mathbb{P}}$ it is still Π^1_1 .

Proof.

Let $\phi(x)$ define \mathcal{A} in L, then in $L^{\mathbb{P}}$ it defines a larger family \mathcal{A}' . But the statement " $\forall x \forall y \ (\phi(x) \land \phi(y) \to x \cap y \text{ is finite})$ " has complexity Π_2^1 and holds in L, so by Shoenfield absoluteness, it holds in $L^{\mathbb{P}}$. Therefore \mathcal{A}' is a.d., but since $\mathcal{A} \subseteq \mathcal{A}'$ and \mathcal{A} is maximal, it must be the case that $\mathcal{A} = \mathcal{A}'$. Therefore \mathcal{A} has a Π_1^1 definition.

Models of ¬CH

 Well-known: for (iterations of) many standard forcing notions P, including Cohen-, random-, Sacks- and Miller forcing, there are P-indestructible MAD families.

Models of ¬CH

- Well-known: for (iterations of) many standard forcing notions P, including Cohen-, random-, Sacks- and Miller forcing, there are P-indestructible MAD families.
- Also known: such constructions can be made Π_1^1 in L (Miller 1989, Kastermans et al 2008).

Models of ¬CH

- Well-known: for (iterations of) many standard forcing notions P, including Cohen-, random-, Sacks- and Miller forcing, there are P-indestructible MAD families.
- Also known: such constructions can be made Π_1^1 in L (Miller 1989, Kastermans et al 2008).

Corollary

 $CON(\neg CH + \exists \mathbf{\Pi}_1^1 MAD).$

• Well-known: if \mathcal{A} is MAD and \mathbb{P} adds a dominating real (i.e., a real which dominates all ground model reals), then \mathcal{A} is no longer MAD in $V^{\mathbb{P}}$.

• Well-known: if \mathcal{A} is MAD and \mathbb{P} adds a dominating real (i.e., a real which dominates all ground model reals), then \mathcal{A} is no longer MAD in $V^{\mathbb{P}}$.

Questions:

- Is " $\mathfrak{b} > \aleph_1 + \exists \mathbf{\Sigma}_2^1 \text{ MAD" consistent?}$
- Is " $\mathfrak{b} > \aleph_1 + \exists \Pi^1_1 \text{ MAD" consistent?}$

• Friedman & Zdomskyy 2010: $CON(\mathfrak{b} > \aleph_1 + \exists \Pi_2^1 \text{ MAD family}).$

- Friedman & Zdomskyy 2010: $CON(\mathfrak{b} > \aleph_1 + \exists \mathbf{\Pi}_2^1 \text{ MAD family}).$
- Raghavan (unpublished): if $\mathfrak{t} > \aleph_1$ then $\nexists \mathbf{\Sigma}_2^1$ MAD.

- Friedman & Zdomskyy 2010: $CON(\mathfrak{b} > \aleph_1 + \exists \mathbf{\Pi}_2^1 \text{ MAD family}).$
- Raghavan (unpublished): if $\mathfrak{t} > \aleph_1$ then $\nexists \mathbf{\Sigma}_2^1$ MAD.
- To build a model of " $\mathfrak{b} > \aleph_1 + \exists \mathbf{\Sigma}_2^1$ MAD", previous methods don't suffice, because they only produce MAD families $\mathcal{A} \subseteq \mathsf{L}$.

- Friedman & Zdomskyy 2010: $CON(\mathfrak{b} > \aleph_1 + \exists \mathbf{\Pi}_2^1 \text{ MAD family}).$
- Raghavan (unpublished): if $\mathfrak{t} > \aleph_1$ then $\nexists \mathbf{\Sigma}_2^1$ MAD.
- To build a model of " $\mathfrak{b} > \aleph_1 + \exists \mathbf{\Sigma}_2^1$ MAD", previous methods don't suffice, because they only produce MAD families $\mathcal{A} \subseteq \mathsf{L}$.
- To avoid this problem, we consider MAD families defined by \aleph_1 -unions of perfect sets.

ℵ₁-perfect MAD

Definition

• An \aleph_1 -perfect MAD is a MAD family $\mathcal A$ such that $\mathcal A = \bigcup \{P_\alpha \mid \alpha < \aleph_1\}$, where P_α is a perfect set.

\aleph_1 -perfect MAD

Definition

- An \aleph_1 -perfect MAD is a MAD family \mathcal{A} such that $\mathcal{A} = \bigcup \{P_\alpha \mid \alpha < \aleph_1\}$, where P_α is a perfect set.
- **2** An \aleph_1 -perfect MAD \mathcal{A} is \mathbb{P} -indestructible if in $V^{\mathbb{P}}$, $\mathcal{A}^{V^{\mathbb{P}}} := \bigcup \{P_{\alpha}^{V^{\mathbb{P}}} \mid \alpha < \aleph_1\}$ is MAD.

\aleph_1 -perfect MAD

Definition

- **1** An \aleph_1 -perfect MAD is a MAD family \mathcal{A} such that $\mathcal{A} = \bigcup \{P_\alpha \mid \alpha < \aleph_1\}$, where P_α is a perfect set.
- **2** An \aleph_1 -perfect MAD \mathcal{A} is \mathbb{P} -indestructible if in $V^{\mathbb{P}}$, $\mathcal{A}^{V^{\mathbb{P}}} := \bigcup \{P_{\alpha}^{V^{\mathbb{P}}} \mid \alpha < \aleph_1\}$ is MAD.

NB. If \mathbb{P} adds a dominating real, it will destroy the \aleph_1 -union of the *old* perfect sets, but not necessarily that of the *new* perfect sets.

Theorem (Brendle-Kh.)

 $\mathsf{CON}(\mathfrak{b} > \aleph_1 + \exists \mathbf{\Sigma}_2^1 \; \mathit{MAD}).$

Theorem (Brendle-Kh.)

$$CON(\mathfrak{b} > \aleph_1 + \exists \mathbf{\Sigma}_2^1 MAD).$$

Recall:

• Hechler forcing $\mathbb D$ consist of conditions $(s,f)\in\omega^{<\omega}\times\omega^{\omega}$ with $s\subseteq f$, ordered by

$$(s', f') \leq (s, f) \iff s \subseteq s' \text{ and } f \leq f'$$

Theorem (Brendle-Kh.)

$$CON(\mathfrak{b} > \aleph_1 + \exists \mathbf{\Sigma}_2^1 MAD).$$

Recall:

• Hechler forcing $\mathbb D$ consist of conditions $(s,f) \in \omega^{<\omega} \times \omega^{\omega}$ with $s \subseteq f$, ordered by

$$(s',f') \leq (s,f) \iff s \subseteq s' \text{ and } f \leq f'$$

ullet ${\mathbb D}$ generically adds a dominating real.

Theorem (Brendle-Kh.)

$$CON(\mathfrak{b} > \aleph_1 + \exists \mathbf{\Sigma}_2^1 MAD).$$

Recall:

• Hechler forcing $\mathbb D$ consist of conditions $(s,f) \in \omega^{<\omega} \times \omega^{\omega}$ with $s \subseteq f$, ordered by

$$(s',f') \leq (s,f) \iff s \subseteq s' \text{ and } f \leq f'$$

- D generically adds a dominating real.
- \mathbb{D} preserves splitting families: if $S \subseteq [\omega]^{\omega}$ is a splitting family in V then it is still a splitting family in $V^{\mathbb{D}}$.

Theorem (Brendle-Kh.)

$$CON(\mathfrak{b} > \aleph_1 + \exists \mathbf{\Sigma}_2^1 MAD).$$

Recall:

• Hechler forcing $\mathbb D$ consist of conditions $(s,f) \in \omega^{<\omega} \times \omega^{\omega}$ with $s \subseteq f$, ordered by

$$(s',f') \leq (s,f) \iff s \subseteq s' \text{ and } f \leq f'$$

- D generically adds a dominating real.
- \mathbb{D} preserves splitting families: if $S \subseteq [\omega]^{\omega}$ is a splitting family in V then it is still a splitting family in $V^{\mathbb{D}}$.

To prove the theorem, it suffices to construct a \mathbb{D} -indestructible, Σ_2^1 -definable, \aleph_1 -perfect MAD family in L.

Proof: By simultaneous induction, construct a sequence $\langle P_{\alpha} \mid \alpha < \omega_1 \rangle$ of perfect a.d. sets, and an increasing sequence $\langle M_{\alpha} \mid \alpha < \omega_1 \rangle$ of countable models, such that the following conditions are satisfied:

Proof: By simultaneous induction, construct a sequence $\langle P_{\alpha} \mid \alpha < \omega_1 \rangle$ of perfect a.d. sets, and an increasing sequence $\langle M_{\alpha} \mid \alpha < \omega_1 \rangle$ of countable models, such that the following conditions are satisfied:

(1) $\bigcup_{\alpha < \omega_1} M_{\alpha}$ covers all the reals,

Proof: By simultaneous induction, construct a sequence $\langle P_{\alpha} \mid \alpha < \omega_1 \rangle$ of perfect a.d. sets, and an increasing sequence $\langle M_{\alpha} \mid \alpha < \omega_1 \rangle$ of countable models, such that the following conditions are satisfied:

- (1) $\bigcup_{\alpha < \omega_1} M_{\alpha}$ covers all the reals,
- (2) $P_{\alpha} \in M_{\alpha}$ for all α ,

Proof: By simultaneous induction, construct a sequence $\langle P_{\alpha} \mid \alpha < \omega_1 \rangle$ of perfect a.d. sets, and an increasing sequence $\langle M_{\alpha} \mid \alpha < \omega_1 \rangle$ of countable models, such that the following conditions are satisfied:

- (1) $\bigcup_{\alpha < \omega_1} M_{\alpha}$ covers all the reals,
- (2) $P_{\alpha} \in M_{\alpha}$ for all α ,
- (3) For all α, β and all $a \in P_{\alpha}$, $b \in P_{\beta}$, $|a \cap b| < \omega$, and

Proof: By simultaneous induction, construct a sequence $\langle P_{\alpha} \mid \alpha < \omega_1 \rangle$ of perfect a.d. sets, and an increasing sequence $\langle M_{\alpha} \mid \alpha < \omega_1 \rangle$ of countable models, such that the following conditions are satisfied:

- (1) $\bigcup_{\alpha < \omega_1} M_{\alpha}$ covers all the reals,
- (2) $P_{\alpha} \in M_{\alpha}$ for all α ,
- (3) For all α, β and all $a \in P_{\alpha}$, $b \in P_{\beta}$, $|a \cap b| < \omega$, and
- (4) For all α and all $Y \in [\omega]^{\omega} \cap M_{\alpha}$: if Y is a.d. from $\bigcup_{\xi < \alpha} P_{\xi}$, then it is *not* a.d. from $P_{\alpha+1}$.

Proof: By simultaneous induction, construct a sequence $\langle P_{\alpha} \mid \alpha < \omega_1 \rangle$ of perfect a.d. sets, and an increasing sequence $\langle M_{\alpha} \mid \alpha < \omega_1 \rangle$ of countable models, such that the following conditions are satisfied:

- (1) $\bigcup_{\alpha<\omega_1}M_\alpha$ covers all the reals,
- (2) $P_{\alpha} \in M_{\alpha}$ for all α ,
- (3) For all α, β and all $a \in P_{\alpha}$, $b \in P_{\beta}$, $|a \cap b| < \omega$, and
- (4) For all α and all $Y \in [\omega]^{\omega} \cap M_{\alpha}$: if Y is a.d. from $\bigcup_{\xi \leq \alpha} P_{\xi}$, then it is *not* a.d. from $P_{\alpha+1}$.

To satisfy (4), $P_{\alpha+1}$ is constructed from Cohen reals over M_{α} and using the fact that Cohen reals are *splitting reals*.

Proof: By simultaneous induction, construct a sequence $\langle P_{\alpha} \mid \alpha < \omega_1 \rangle$ of perfect a.d. sets, and an increasing sequence $\langle M_{\alpha} \mid \alpha < \omega_1 \rangle$ of countable models, such that the following conditions are satisfied:

- (1) $\bigcup_{\alpha<\omega_1}M_\alpha$ covers all the reals,
- (2) $P_{\alpha} \in M_{\alpha}$ for all α ,
- (3) For all α, β and all $a \in P_{\alpha}$, $b \in P_{\beta}$, $|a \cap b| < \omega$, and
- (4) For all α and all $Y \in [\omega]^{\omega} \cap M_{\alpha}$: if Y is a.d. from $\bigcup_{\xi \leq \alpha} P_{\xi}$, then it is *not* a.d. from $P_{\alpha+1}$.

To satisfy (4), $P_{\alpha+1}$ is constructed from Cohen reals over M_{α} and using the fact that Cohen reals are *splitting reals*.

(4') Let G be generic for the \aleph_2 -iteration of \mathbb{D} . For all α and all $Y \in [\omega]^\omega \cap M_\alpha[G]$: if Y is a.d. from $\bigcup_{\xi \leq \alpha} P_\xi^{\mathsf{V}[G]}$, then it is *not* a.d. from $P_{\alpha+1}^{\mathsf{V}[G]}$.

Let $\mathcal{A} := \bigcup_{\alpha < \omega_1} P_{\alpha}$. Note that \mathcal{A} can easily be made Σ_2^1 .

• In L: why is \mathcal{A} MAD?

Let $\mathcal{A}:=\bigcup_{\alpha<\omega_1}P_\alpha$. Note that \mathcal{A} can easily be made $\mathbf{\Sigma}^1_2$.

• In L: why is \mathcal{A} MAD? Take $Y \in [\omega]^{\omega}$. Let α be such that $Y \in M_{\alpha}$, apply condition (4) and we are done.

- In L: why is \mathcal{A} MAD? Take $Y \in [\omega]^{\omega}$. Let α be such that $Y \in M_{\alpha}$, apply condition (4) and we are done.
- In the ℵ₂-iteration of D: why does A survive?

- In L: why is \mathcal{A} MAD? Take $Y \in [\omega]^{\omega}$. Let α be such that $Y \in M_{\alpha}$, apply condition (4) and we are done.
- In the \aleph_2 -iteration of \mathbb{D} : why does \mathcal{A} survive? Take $Y \in \mathsf{L}[G]$. Let \dot{Y} be a name for Y.

- In L: why is \mathcal{A} MAD? Take $Y \in [\omega]^{\omega}$. Let α be such that $Y \in M_{\alpha}$, apply condition (4) and we are done.
- In the \aleph_2 -iteration of \mathbb{D} : why does \mathcal{A} survive? Take $Y \in \mathsf{L}[G]$. Let \dot{Y} be a name for Y.
 - First attempt: let α be such that $\dot{Y} \in M_{\alpha}$. Then $Y \in M_{\alpha}[G]$, so apply condition (4') and we are done.

Let $\mathcal{A}:=\bigcup_{\alpha<\omega_1}P_\alpha$. Note that \mathcal{A} can easily be made $\mathbf{\Sigma}^1_2$.

- In L: why is \mathcal{A} MAD? Take $Y \in [\omega]^{\omega}$. Let α be such that $Y \in M_{\alpha}$, apply condition (4) and we are done.
- In the \aleph_2 -iteration of \mathbb{D} : why does \mathcal{A} survive? Take $Y \in \mathsf{L}[G]$. Let Y be a name for Y.
 - First attempt: let α be such that $Y \in M_{\alpha}$. Then $Y \in M_{\alpha}[G]$, so apply condition (4') and we are done.

Problem: $\bigcup_{\alpha<\omega_1} M_\alpha$ cannot cover all names for reals, because we are dealing with an \aleph_2 -iteration.

- In L: why is \mathcal{A} MAD? Take $Y \in [\omega]^{\omega}$. Let α be such that $Y \in M_{\alpha}$, apply condition (4) and we are done.
- In the \aleph_2 -iteration of \mathbb{D} : why does \mathcal{A} survive? Take $Y \in \mathsf{L}[G]$. Let Y be a name for Y.
 - First attempt: let α be such that $\dot{Y} \in M_{\alpha}$. Then $Y \in M_{\alpha}[G]$, so apply condition (4') and we are done.

- In L: why is \mathcal{A} MAD? Take $Y \in [\omega]^{\omega}$. Let α be such that $Y \in M_{\alpha}$, apply condition (4) and we are done.
- In the \aleph_2 -iteration of \mathbb{D} : why does \mathcal{A} survive? Take $Y \in \mathsf{L}[G]$. Let Y be a name for Y.
 - First attempt: let α be such that $\dot{Y} \in M_{\alpha}$. Then $Y \in M_{\alpha}[G]$, so apply condition (4') and we are done.
 - Second attempt: Let N be a countable model such that $Y \in N$.

- In L: why is \mathcal{A} MAD? Take $Y \in [\omega]^{\omega}$. Let α be such that $Y \in M_{\alpha}$, apply condition (4) and we are done.
- In the \aleph_2 -iteration of \mathbb{D} : why does \mathcal{A} survive? Take $Y \in \mathsf{L}[G]$. Let Y be a name for Y.
 - First attempt: let α be such that $\dot{Y} \in M_{\alpha}$. Then $Y \in M_{\alpha}[G]$, so apply condition (4') and we are done.
 - Second attempt: Let N be a countable model such that $Y \in N$. Now let α be such that $M_{\alpha} \cap \omega^{\omega} = N \cap \omega^{\omega}$.

- In L: why is \mathcal{A} MAD? Take $Y \in [\omega]^{\omega}$. Let α be such that $Y \in M_{\alpha}$, apply condition (4) and we are done.
- In the \aleph_2 -iteration of \mathbb{D} : why does \mathcal{A} survive? Take $Y \in \mathsf{L}[G]$. Let \dot{Y} be a name for Y.
 - First attempt: let α be such that $\dot{Y} \in M_{\alpha}$. Then $Y \in M_{\alpha}[G]$, so apply condition (4') and we are done.
 - Second attempt: Let N be a countable model such that $Y \in N$. Now let α be such that $M_{\alpha} \cap \omega^{\omega} = N \cap \omega^{\omega}$. Then N and M_{α} contain the same P_{ξ} for $\xi \leq \alpha$ and agree on splitting reals. Hence (4') applies also with N instead of M_{α} .

Open Questions:

• Is " $\mathfrak{b} > \aleph_1 + \exists \Pi^1_1 \text{ MAD" consistent?}$

Open Questions:

• Is " $\mathfrak{b} > \aleph_1 + \exists \Pi_1^1 \text{ MAD" consistent?}$

Problem: if we write $\mathcal{A} = \bigcup \{P_x \mid x \in I\}$, where I is a family of reals coding the perfect sets, then I can be made Π^1_1 using the methods of (Miller 1989). But that implies only that \mathcal{A} is Σ^1_2 .

Open Questions:

- Is " $\mathfrak{b} > \aleph_1 + \exists \Pi_1^1 \text{ MAD" consistent?}$
 - Problem: if we write $\mathcal{A} = \bigcup \{P_x \mid x \in I\}$, where I is a family of reals coding the perfect sets, then I can be made Π^1_1 using the methods of (Miller 1989). But that implies only that \mathcal{A} is Σ^1_2 .
- **②** More general: is " $\exists \Pi_1^1$ MAD" equivalent to " $\exists \Sigma_2^1$ MAD"?

Open Questions:

- Is " $\mathfrak{b} > \aleph_1 + \exists \Pi_1^1 \text{ MAD" consistent?}$
 - Problem: if we write $\mathcal{A} = \bigcup \{P_x \mid x \in I\}$, where I is a family of reals coding the perfect sets, then I can be made Π^1_1 using the methods of (Miller 1989). But that implies only that \mathcal{A} is Σ^1_2 .
- **2** More general: is " $\exists \Pi_1^1 \text{ MAD"}$ equivalent to " $\exists \Sigma_2^1 \text{ MAD"}$?
- **3** Does $\mathfrak{h} > \aleph_1$ imply " $\nexists \mathbf{\Sigma}_2^1$ MAD"? (Raghavan's conjecture.)

Open Questions:

- Is " $\mathfrak{b} > \aleph_1 + \exists \Pi_1^1 \text{ MAD" consistent?}$
 - Problem: if we write $\mathcal{A} = \bigcup \{P_x \mid x \in I\}$, where I is a family of reals coding the perfect sets, then I can be made Π^1_1 using the methods of (Miller 1989). But that implies only that \mathcal{A} is Σ^1_2 .
- **②** More general: is " $\exists \Pi_1^1 \text{ MAD}$ " equivalent to " $\exists \Sigma_2^1 \text{ MAD}$ "?
- **3** Does $\mathfrak{h} > \aleph_1$ imply " $\nexists \mathbf{\Sigma}_2^1$ MAD"? (Raghavan's conjecture.)
- **1** Related conjecture: does "all Σ_2^1 sets are Ramsey" imply " $\sharp \Sigma_2^1$ MAD"?

Thank you!

Yurii Khomskii

yurii@deds.nl

- Sy-David Friedman, Lyubomir Zdomskyy, *Projective mad families*, Annals of Pure and Applied Logic 161 (2010), pp. 1581-1587.
- Bart Kastermans, Juris Steprāns and Yi Zhang, *Analytic and coanalytic families of almost disjoint functions*, J. Symbolic Logic 73 (2008), pp. 1158–1172
- Adrian Mathias, *Happy families*, Annals of Mathematical Logic 12 (1977), pp. 59–111.
 - Arnold Miller, *Infinite combinatorics and definability*, Annals of Pure and Applied Logic 41 (1989), pp. 179–203.