MAD families and the projective hierarchy

Yurii Khomskii
University of Amsterdam

Joint work with Jörg Brendle (Kobe University, Japan)

ASL North American Meeting
University of California Berkeley, 25 March 2011
Two sets $A, B \in [\omega]^\omega$ are called *almost disjoint* (a.d.) if $A \cap B$ is finite.
MAD families

Definition

1. Two sets $A, B \in [\omega]^\omega$ are called \textit{almost disjoint} (a.d.) if $A \cap B$ is finite.

2. A family $\mathcal{A} \subseteq [\omega]^\omega$ is called \textit{almost disjoint} (a.d.) if

$$\forall A, B \in \mathcal{A} \ (A \text{ and } B \text{ are a.d.})$$
MAD families

Definition

1. Two sets $A, B \in [\omega]^{\omega}$ are called almost disjoint (a.d.) if $A \cap B$ is finite.

2. A family $\mathcal{A} \subseteq [\omega]^{\omega}$ is called almost disjoint (a.d.) if

$$\forall A, B \in \mathcal{A} \ (A \text{ and } B \text{ are a.d.})$$

3. A family $\mathcal{A} \subseteq [\omega]^{\omega}$ is called maximal almost disjoint (MAD) if it is an infinite a.d. family and maximal with this property.
MAD families

Definition

1. Two sets $A, B \in [\omega]^\omega$ are called *almost disjoint* (a.d.) if $A \cap B$ is finite.

2. A family $\mathcal{A} \subseteq [\omega]^\omega$ is called *almost disjoint* (a.d.) if
 \[\forall A, B \in \mathcal{A} \ (A \text{ and } B \text{ are a.d.}) \]

3. A family $\mathcal{A} \subseteq [\omega]^\omega$ is called *maximal almost disjoint* (MAD) if it is an infinite a.d. family and maximal with this property.

MAD families can be constructed in ZFC using a well-ordering of $[\omega]^\omega$.
Via $[\omega]^\omega \cong 2^\omega$, we can talk about the complexity MAD families (descriptive set theory).
Complexity

Via $[\omega]^\omega \cong 2^\omega$, we can talk about the complexity MAD families (descriptive set theory).

Theorem (Mathias 1977)

There is no analytic MAD family.
Via \([\omega]^\omega \cong 2^\omega\), we can talk about the complexity MAD families (descriptive set theory).

Theorem (Mathias 1977)

There is no analytic MAD family.

Fact

If \(V = L\) then there is a \(\Sigma^1_2\) MAD family (use the \(\Sigma^1_2\) well-ordering of \([\omega]^\omega\)).
Complexity

Via $[\omega]^\omega \cong 2^\omega$, we can talk about the complexity MAD families (descriptive set theory).

Theorem (Mathias 1977)

There is no analytic MAD family.

Fact

If $V = L$ then there is a Σ^1_2 MAD family (use the Σ^1_2 well-ordering of $[\omega]^\omega$).

Theorem (Miller 1989)

If $V = L$ then there is a Π^1_1 MAD family.
Question: are there Π^1_1/Σ^1_2 MAD families in models larger than L?
Question: are there Π^1_1/Σ^1_2 MAD families in models larger than L?

Definition

Let \mathbb{P} be a (proper) forcing. A MAD family \mathcal{A} is called \mathbb{P}-indestructible if it remains a MAD family in $V^\mathbb{P}$.
Preservation of Σ^1_2 definition

Fact

If $A \in L$ is a Σ^1_2 \mathbb{P}-indestructible MAD family, then in $L^\mathbb{P}$ it is still Σ^1_2.
Fact

If $\mathcal{A} \in L$ is a Σ^1_2 \mathbb{P}-indestructible MAD family, then in $L^\mathbb{P}$ it is still Σ^1_2.

Proof.

If $\phi(x)$ is Σ^1_2 and defines \mathcal{A} in L, then "$\phi(x) \land x \in L$" is also Σ^1_2 and defines \mathcal{A} in $L^\mathbb{P}$.
Preservation of Π_1^1 definition

Fact (Friedman & Zdomskyy 2010)

If $A \in L$ is a Π_1^1 P-indestructible MAD family, then in L^P it is still Π_1^1.

Proof. Let $\varphi(x)$ define A in L, then in L^P it defines a larger family A'. But the statement "$\forall x \forall y (\varphi(x) \land \varphi(y) \rightarrow x \cap y \text{ is finite})" has complexity Π_1^2 and holds in L, so by Shoenfield absoluteness, it holds in L^P. Therefore A' is a.d., but since $A \subseteq A'$ and A is maximal, it must be the case that $A = A'$. Therefore A has a Π_1^1 definition.
Fact (Friedman & Zdomskyy 2010)

If $A \in L$ is a Π^1_1 \mathbb{P}-indestructible MAD family, then in $L^\mathbb{P}$ it is still Π^1_1.

Proof.

Let $\phi(x)$ define A in L, then in $L^\mathbb{P}$ it defines a larger family A'. But the statement "$\forall x \forall y \ (\phi(x) \land \phi(y) \rightarrow x \cap y$ is finite)" has complexity Π^1_2 and holds in L, so by Shoenfield absoluteness, it holds in $L^\mathbb{P}$. Therefore A' is a.d., but since $A \subseteq A'$ and A is maximal, it must be the case that $A = A'$. Therefore A has a Π^1_1 definition.
Well-known: for (iterations of) many standard forcing notions \mathbb{P}, including Cohen-, random-, Sacks- and Miller forcing, there are \mathbb{P}-indestructible MAD families.
Models of $\neg\text{CH}$

- **Well-known:** for (iterations of) many standard forcing notions \mathbb{P}, including Cohen-, random-, Sacks- and Miller forcing, there are \mathbb{P}-indestructible MAD families.
- **Also known:** such constructions can be made Π^1_1 in L (Miller 1989, Kastermans et al 2008).
Models of \(\neg \text{CH} \)

- **Well-known**: for (iterations of) many standard forcing notions \(\mathbb{P} \), including Cohen-, random-, Sacks- and Miller forcing, there are \(\mathbb{P} \)-indestructible MAD families.

- **Also known**: such constructions can be made \(\Pi^1_1 \) in \(L \) (Miller 1989, Kastermans et al 2008).

Corollary

\[
\text{CON}(\neg \text{CH} + \exists \Pi^1_1 \text{ MAD}).
\]
Dominating reals

- **Well-known:** if \mathcal{A} is MAD and \mathbb{P} adds a dominating real (i.e., a real which dominates all ground model reals), then \mathcal{A} is no longer MAD in $V^\mathbb{P}$.
Dominating reals

- **Well-known**: if \mathcal{A} is MAD and \mathbb{P} adds a dominating real (i.e., a real which dominates all ground model reals), then \mathcal{A} is no longer MAD in $V^\mathbb{P}$.

Questions:

- Is “$b > \aleph_1 + \exists \Sigma^1_2$ MAD” consistent?
- Is “$b > \aleph_1 + \exists \Pi^1_1$ MAD” consistent?
Friedman & Zdomskyy 2010: \(\text{CON}(\mathfrak{b} > \aleph_1 + \exists \Pi^1_2 \text{ MAD family}) \).
Dominating reals

- Friedman & Zdomskyy 2010: $\text{CON}(\mathfrak{b} > \aleph_1 + \exists \Pi^1_2 \text{ MAD family})$.

- Raghavan (unpublished): if $t > \aleph_1$ then $\not\exists \Sigma^1_2 \text{ MAD}$.
Friedman & Zdomskyy 2010: $\text{CON}(b > \aleph_1 + \exists \Pi^1_2 \text{ MAD family})$.

Raghavan (unpublished): if $t > \aleph_1$ then $\not\exists \Sigma^1_2 \text{ MAD}$.

To build a model of "$b > \aleph_1 + \exists \Sigma^1_2 \text{ MAD}$", previous methods don’t suffice, because they only produce MAD families $\mathcal{A} \subseteq L$.
Friedman & Zdomskyy 2010: $\text{CON}(\mathfrak{b} > \aleph_1 + \exists \Pi^1_2 \text{ MAD family})$.

Raghavan (unpublished): if $t > \aleph_1$ then $\not\exists \Sigma^1_2 \text{ MAD}$.

To build a model of “$\mathfrak{b} > \aleph_1 + \exists \Sigma^1_2 \text{ MAD}$”, previous methods don’t suffice, because they only produce MAD families $\mathcal{A} \subseteq L$.

To avoid this problem, we consider MAD families defined by \aleph_1-unions of perfect sets.
An \aleph_1-perfect MAD is a MAD family A such that $A = \bigcup \{P_\alpha \mid \alpha < \aleph_1\}$, where P_α is a perfect set.
An \aleph_1-perfect MAD is a MAD family \mathcal{A} such that $\mathcal{A} = \bigcup \{ P_\alpha \mid \alpha < \aleph_1 \}$, where P_α is a perfect set.

An \aleph_1-perfect MAD \mathcal{A} is \mathbb{P}-indestructible if in $V^\mathbb{P}$, $\mathcal{A}^{V^\mathbb{P}} := \bigcup \{ P^{V^\mathbb{P}}_\alpha \mid \alpha < \aleph_1 \}$ is MAD.
\(\aleph_1\)-perfect MAD

Definition

1. An \(\aleph_1\)-perfect MAD is a MAD family \(A\) such that
 \[A = \bigcup \{ P_\alpha \mid \alpha < \aleph_1 \},\]
 where \(P_\alpha\) is a perfect set.

2. An \(\aleph_1\)-perfect MAD \(A\) is \(P\)-indestructible if in \(V^P\),
 \[A^V := \bigcup \{ P^V_\alpha \mid \alpha < \aleph_1 \}\]
 is MAD.

NB. If \(P\) adds a dominating real, it will destroy the \(\aleph_1\)-union of the *old* perfect sets, but not necessarily that of the *new* perfect sets.
Main result

Theorem (Brendle-Kh.)

\[\text{CON}(b > \aleph_1 + \exists \Sigma^1_2 \text{ MAD}). \]
Main result

Theorem (Brendle-Kh.)

$\text{CON}(\mathfrak{b} > \aleph_1 + \exists \Sigma^1_2 \text{MAD})$.

Recall:

- Hechler forcing \mathbb{D} consist of conditions $(s, f) \in \omega^{<\omega} \times \omega^\omega$ with $s \subseteq f$, ordered by

$$(s', f') \leq (s, f) \iff s \subseteq s' \text{ and } f \leq f'$$
Main result

Theorem (Brendle-Kh.)

\(\text{CON}(\mathfrak{b} > \aleph_1 + \exists \Sigma^1_2 \text{ MAD}) \).

Recall:

- Hechler forcing \(\mathbb{D} \) consist of conditions \((s, f) \in \omega^{<\omega} \times \omega^\omega \) with \(s \subseteq f \), ordered by

\[(s', f') \leq (s, f) \iff s \subseteq s' \text{ and } f \leq f' \]

- \(\mathbb{D} \) generically adds a dominating real.
Main result

Theorem (Brendle-Kh.)

\(\text{CON}(b > \aleph_1 + \exists \Sigma^1_2 \text{ MAD}). \)

Recall:

- Hechler forcing \(\mathbb{D} \) consist of conditions \((s, f) \in \omega^{<\omega} \times \omega^\omega\) with \(s \subseteq f \), ordered by
 \[(s', f') \leq (s, f) \iff s \subseteq s' \text{ and } f \leq f' \]
- \(\mathbb{D} \) generically adds a dominating real.
- \(\mathbb{D} \) preserves splitting families: if \(S \subseteq [\omega]^\omega \) is a splitting family in \(V \) then it is still a splitting family in \(V^{\mathbb{D}} \).
Main result

Theorem (Brendle-Kh.)

CON($\mathfrak{b} > \aleph_1 + \exists \Sigma^1_2$ MAD).

Recall:
- Hechler forcing \mathbb{D} consist of conditions $(s, f) \in \omega^{<\omega} \times \omega^\omega$ with $s \subseteq f$, ordered by
 $$(s', f') \leq (s, f) \iff s \subseteq s' \text{ and } f \leq f'$$
- \mathbb{D} generically adds a dominating real.
- \mathbb{D} preserves splitting families: if $S \subseteq [\omega]^{\omega}$ is a splitting family in V then it is still a splitting family in $V^{\mathbb{D}}$.

To prove the theorem, it suffices to construct a \mathbb{D}-indestructible, Σ^1_2-definable, \aleph_1-perfect MAD family in L.
Proof

Proof: By simultaneous induction, construct a sequence $\langle P_\alpha \mid \alpha < \omega_1 \rangle$ of perfect a.d. sets, and an increasing sequence $\langle M_\alpha \mid \alpha < \omega_1 \rangle$ of countable models, such that the following conditions are satisfied:

1. $\bigcup_{\alpha < \omega_1} M_\alpha$ covers all the reals,
2. $P_\alpha \in M_\alpha$ for all α,
3. For all α, β and all $a \in P_\alpha$, $b \in P_\beta$, $|a \cap b| < \omega$, and
4. For all α and all $Y \in \left[\omega \right]_\omega \cap M_\alpha$: if Y is a.d. from $\bigcup_{\xi \leq \alpha} P_\xi$, then it is not a.d. from $P_{\alpha+1}$.

To satisfy (4), $P_{\alpha+1}$ is constructed from Cohen reals over M_α and using the fact that Cohen reals are splitting reals.

(4') Let G be generic for the \aleph_2-iteration of D. For all α and all $Y \in \left[\omega \right]_\omega \cap M_\alpha [G]$: if Y is a.d. from $\bigcup_{\xi \leq \alpha} P_\xi [G]$, then it is not a.d. from $P_{\alpha+1} [G]$.
Proof: By simultaneous induction, construct a sequence $\langle P_\alpha \mid \alpha < \omega_1 \rangle$ of perfect a.d. sets, and an increasing sequence $\langle M_\alpha \mid \alpha < \omega_1 \rangle$ of countable models, such that the following conditions are satisfied:

1. $\bigcup_{\alpha < \omega_1} M_\alpha$ covers all the reals,
Proof:

Proof: By simultaneous induction, construct a sequence $\langle P_\alpha \mid \alpha < \omega_1 \rangle$ of perfect a.d. sets, and an increasing sequence $\langle M_\alpha \mid \alpha < \omega_1 \rangle$ of countable models, such that the following conditions are satisfied:

1. $\bigcup_{\alpha < \omega_1} M_\alpha$ covers all the reals,
2. $P_\alpha \in M_\alpha$ for all α,
Proof

Proof: By simultaneous induction, construct a sequence $\langle P_\alpha \mid \alpha < \omega_1 \rangle$ of perfect a.d. sets, and an increasing sequence $\langle M_\alpha \mid \alpha < \omega_1 \rangle$ of countable models, such that the following conditions are satisfied:

1. $\bigcup_{\alpha < \omega_1} M_\alpha$ covers all the reals,
2. $P_\alpha \in M_\alpha$ for all α,
3. For all α, β and all $a \in P_\alpha, b \in P_\beta$, $|a \cap b| < \omega$, and

(4) Let G be generic for the \aleph_2-iteration of \mathcal{D}. For all α and all $Y \in \mathcal{P}(\omega) \cap M_\alpha \setminus G$: if Y is a.d. from $\bigcup_{\xi \leq \alpha} P_\xi$ $\mathcal{P}(\mathcal{V} \setminus G)_\xi$, then it is not a.d. from $P_{\alpha+1}$.
Proof

Proof: By simultaneous induction, construct a sequence $\langle P_\alpha \mid \alpha < \omega_1 \rangle$ of perfect a.d. sets, and an increasing sequence $\langle M_\alpha \mid \alpha < \omega_1 \rangle$ of countable models, such that the following conditions are satisfied:

1. $\bigcup_{\alpha < \omega_1} M_\alpha$ covers all the reals,
2. $P_\alpha \in M_\alpha$ for all α,
3. For all α, β and all $a \in P_\alpha$, $b \in P_\beta$, $|a \cap b| < \omega$, and
4. For all α and all $Y \in [\omega]^{\omega} \cap M_\alpha$: if Y is a.d. from $\bigcup_{\xi \leq \alpha} P_\xi$, then it is not a.d. from $P_{\alpha+1}$.

(4') Let G be generic for the \aleph_2-iteration of D. For all α and all $Y \in [\omega]^{\omega} \cap M_\alpha$: if Y is a.d. from $\bigcup_{\xi \leq \alpha} P_{V[G]} \xi$, then it is not a.d. from $P_{V[G]}_{\alpha+1}$.
Proof

Proof: By simultaneous induction, construct a sequence \(\langle P_\alpha \mid \alpha < \omega_1 \rangle \) of perfect a.d. sets, and an increasing sequence \(\langle M_\alpha \mid \alpha < \omega_1 \rangle \) of countable models, such that the following conditions are satisfied:

1. \(\bigcup_{\alpha < \omega_1} M_\alpha \) covers all the reals,
2. \(P_\alpha \in M_\alpha \) for all \(\alpha \),
3. For all \(\alpha, \beta \) and all \(a \in P_\alpha, b \in P_\beta, |a \cap b| < \omega \), and
4. For all \(\alpha \) and all \(Y \in [\omega]^\omega \cap M_\alpha \): if \(Y \) is a.d. from \(\bigcup_{\xi \leq \alpha} P_\xi \), then it is not a.d. from \(P_{\alpha+1} \).

To satisfy (4), \(P_{\alpha+1} \) is constructed from Cohen reals over \(M_\alpha \) and using the fact that Cohen reals are splitting reals.
Proof

Proof: By simultaneous induction, construct a sequence $\langle P_\alpha \mid \alpha < \omega_1 \rangle$ of perfect a.d. sets, and an increasing sequence $\langle M_\alpha \mid \alpha < \omega_1 \rangle$ of countable models, such that the following conditions are satisfied:

1. $\bigcup_{\alpha < \omega_1} M_\alpha$ covers all the reals,
2. $P_\alpha \in M_\alpha$ for all α,
3. For all α, β and all $a \in P_\alpha$, $b \in P_\beta$, $|a \cap b| < \omega$, and
4. For all α and all $Y \in [\omega]^{\omega} \cap M_\alpha$: if Y is a.d. from $\bigcup_{\xi \leq \alpha} P_\xi$, then it is *not* a.d. from $P_{\alpha+1}$.

To satisfy (4), $P_{\alpha+1}$ is constructed from Cohen reals over M_α and using the fact that Cohen reals are *splitting reals*.

(4') Let G be generic for the \aleph_2-iteration of \mathbb{D}.
For all α and all $Y \in [\omega]^{\omega} \cap M_\alpha[G]$: if Y is a.d. from $\bigcup_{\xi \leq \alpha} P_\xi^{V[G]}$, then it is *not* a.d. from $P_{\alpha+1}^{V[G]}$.

Yuri Khomskii (University of Amsterdam) Projective MAD families Berkeley, 2011 12 / 15
Proof

Let $\mathcal{A} := \bigcup_{\alpha < \omega_1} P_\alpha$. Note that \mathcal{A} can easily be made Σ^1_2.
Proof

Let \(\mathcal{A} := \bigcup_{\alpha < \omega_1} P_\alpha \). Note that \(\mathcal{A} \) can easily be made \(\Sigma^1_2 \).

- In L: why is \(\mathcal{A} \) MAD?

First attempt: let \(\alpha \) be such that \(\dot{Y} \in M_\alpha \). Then \(Y \in M_\alpha[G] \), so apply condition (4') and we are done.

Problem: \(\bigcup_{\alpha < \omega_1} M_\alpha \) cannot cover all names for reals, because we are dealing with an \(\aleph_2 \)-iteration.

First attempt: let \(\alpha \) be such that \(\dot{Y} \in M_\alpha \). Then \(Y \in M_\alpha[G] \), so apply condition (4') and we are done.

Second attempt: Let \(N \) be a countable model such that \(\dot{Y} \in N \). Now let \(\alpha \) be such that \(M_\alpha \cap \omega = N \cap \omega \). Then \(N \) and \(M_\alpha \) contain the same \(P_\xi \) for \(\xi \leq \alpha \) and agree on splitting reals. Hence (4') applies also with \(N \) instead of \(M_\alpha \).
Proof

Let $\mathcal{A} := \bigcup_{\alpha < \omega_1} P_\alpha$. Note that \mathcal{A} can easily be made Σ^1_2.

- In L: why is \mathcal{A} MAD? Take $Y \in [\omega]^\omega$. Let α be such that $Y \in M_\alpha$, apply condition (4) and we are done.
Proof

Let $\mathcal{A} := \bigcup_{\alpha < \omega_1} P_\alpha$. Note that \mathcal{A} can easily be made Σ^1_2.

- In L: why is \mathcal{A} MAD? Take $Y \in [\omega]^\omega$. Let α be such that $Y \in M_\alpha$, apply condition (4) and we are done.
- In the \aleph_2-iteration of D: why does \mathcal{A} survive?
Proof

Let $\mathcal{A} := \bigcup_{\alpha < \omega_1} P_\alpha$. Note that \mathcal{A} can easily be made Σ^1_2.

- In L: why is \mathcal{A} MAD? Take $Y \in [\omega]^\omega$. Let α be such that $Y \in M_\alpha$, apply condition (4) and we are done.

- In the \aleph_2-iteration of \mathbb{D}: why does \mathcal{A} survive? Take $Y \in L[G]$. Let \dot{Y} be a name for Y.

First attempt: let α be such that $\dot{Y} \in M_\alpha$. Then $Y \in M_\alpha[G]$, so apply condition (4) and we are done.

Problem: $\bigcup_{\alpha < \omega_1} M_\alpha$ cannot cover all names for reals, because we are dealing with an \aleph_2-iteration.

First attempt: let α be such that $\dot{Y} \in M_\alpha$. Then $Y \in M_\alpha[G]$, so apply condition (4) and we are done.

Second attempt: Let N be a countable model such that $\dot{Y} \in N$. Now let α be such that $M_\alpha \cap \omega^\omega = N \cap \omega^\omega$. Then N and M_α contain the same P_ξ for $\xi \leq \alpha$ and agree on splitting reals. Hence (4) applies also with N instead of M_α.
Proof

Let $A := \bigcup_{\alpha < \omega_1} P_\alpha$. Note that A can easily be made Σ^1_2.

- In L: why is A MAD? Take $Y \in [\omega]^{\omega}$. Let α be such that $Y \in M_\alpha$, apply condition (4) and we are done.

- In the \aleph_2-iteration of D: why does A survive? Take $Y \in L[G]$. Let \dot{Y} be a name for Y.

 - First attempt: let α be such that $\dot{Y} \in M_\alpha$. Then $Y \in M_\alpha[G]$, so apply condition (4') and we are done.
Proof

Let $\mathcal{A} := \bigcup_{\alpha < \omega_1} P_\alpha$. Note that \mathcal{A} can easily be made Σ^1_2.

- In L: why is \mathcal{A} MAD? Take $Y \in [\omega]^{\omega}$. Let α be such that $Y \in M_\alpha$, apply condition (4) and we are done.
- In the \aleph_2-iteration of \mathbb{D}: why does \mathcal{A} survive? Take $Y \in L[G]$. Let \dot{Y} be a name for Y.
 - First attempt: let α be such that $\dot{Y} \in M_\alpha$. Then $Y \in M_\alpha[G]$, so apply condition (4') and we are done.

Problem: $\bigcup_{\alpha < \omega_1} M_\alpha$ cannot cover all names for reals, because we are dealing with an \aleph_2-iteration.
Proof

Let $A := \bigcup_{\alpha < \omega_1} P_\alpha$. Note that A can easily be made Σ^1_2.

- In L: why is A MAD? Take $Y \in [\omega]^{\omega}$. Let α be such that $Y \in M_\alpha$, apply condition (4) and we are done.

- In the \aleph_2-iteration of D: why does A survive? Take $Y \in L[G]$. Let \dot{Y} be a name for Y.
 - First attempt: let α be such that $\dot{Y} \in M_\alpha$. Then $Y \in M_\alpha[G]$, so apply condition (4') and we are done.
Proof

Let $\mathcal{A} := \bigcup_{\alpha < \omega_1} P_\alpha$. Note that \mathcal{A} can easily be made Σ^1_2.

- In L: why is \mathcal{A} MAD? Take $Y \in [\omega]^{\omega}$. Let α be such that $Y \in M_\alpha$, apply condition (4) and we are done.
- In the \aleph_2-iteration of \mathbb{D}: why does \mathcal{A} survive? Take $Y \in L[G]$. Let \dot{Y} be a name for Y.
 - First attempt: let α be such that $\dot{Y} \in M_\alpha$. Then $Y \in M_\alpha[G]$, so apply condition (4') and we are done.
 - Second attempt: Let N be a countable model such that $\dot{Y} \in N$. Then N and M_α contain the same P_ξ for $\xi \leq \alpha$ and agree on splitting reals. Hence (4') applies also with N instead of M_α.

Yurii Khomskii (University of Amsterdam) Projective MAD families Berkeley, 2011 13 / 15
Proof

Let $\mathcal{A} := \bigcup_{\alpha < \omega_1} P_{\alpha}$. Note that \mathcal{A} can easily be made Σ^1_2.

- In L: why is \mathcal{A} MAD? Take $Y \in [\omega]^{\omega}$. Let α be such that $Y \in M_{\alpha}$, apply condition (4) and we are done.

- In the \aleph_2-iteration of \mathbb{D}: why does \mathcal{A} survive? Take $Y \in L[G]$. Let \dot{Y} be a name for Y.
 - First attempt: let α be such that $\dot{Y} \in M_{\alpha}$. Then $Y \in M_{\alpha}[G]$, so apply condition $(4')$ and we are done.
 - Second attempt: Let N be a countable model such that $\dot{Y} \in N$. Now let α be such that $M_{\alpha} \cap \omega^\omega = N \cap \omega^\omega$.

Yuri Khomskii (University of Amsterdam) Projective MAD families Berkeley, 2011 13 / 15
Proof

Let \(A := \bigcup_{\alpha < \omega_1} P_\alpha \). Note that \(A \) can easily be made \(\Sigma^1_2 \).

- In \(L \): why is \(A \) MAD? Take \(Y \in [\omega]^\omega \). Let \(\alpha \) be such that \(Y \in M_\alpha \), apply condition (4) and we are done.

- In the \(\aleph_2 \)-iteration of \(D \): why does \(A \) survive? Take \(Y \in L[G] \). Let \(\dot{Y} \) be a name for \(Y \).
 - First attempt: let \(\alpha \) be such that \(\dot{Y} \in M_\alpha \). Then \(Y \in M_\alpha[G] \), so apply condition (4′) and we are done.
 - Second attempt: Let \(N \) be a countable model such that \(\dot{Y} \in N \). Now let \(\alpha \) be such that \(M_\alpha \cap \omega^\omega = N \cap \omega^\omega \). Then \(N \) and \(M_\alpha \) contain the same \(P_\xi \) for \(\xi \leq \alpha \) and agree on splitting reals. Hence (4′) applies also with \(N \) instead of \(M_\alpha \).

\(\square \)
Questions

Open Questions:

1. Is \(b > \aleph_1 + \exists \Pi^1_1 \text{ MAD} \) consistent?

2. More general: is \(\exists \Pi^1_1 \text{ MAD} \) equivalent to \(\exists \Sigma^1_2 \text{ MAD} \)?

3. Does \(h > \aleph_1 \) imply \(\exists \Sigma^1_2 \text{ MAD} \)? (Raghavan’s conjecture.)

4. Related conjecture: does “all \(\Sigma^1_2 \) sets are Ramsey” imply \(\exists \Sigma^1_2 \text{ MAD} \)?
Open Questions:

1. Is “\(b > \aleph_1 + \exists \Pi^1_1 \) MAD” consistent?

 Problem: if we write \(\mathcal{A} = \bigcup \{ P_x \mid x \in I \} \), where \(I \) is a family of reals coding the perfect sets, then \(I \) can be made \(\Pi^1_1 \) using the methods of (Miller 1989). But that implies only that \(\mathcal{A} \) is \(\Sigma^1_2 \).
Open Questions:

1. Is “$b > \aleph_1 + \exists\Pi^1_1$ MAD” consistent?

 Problem: if we write $\mathcal{A} = \bigcup\{P_x \mid x \in I\}$, where I is a family of reals coding the perfect sets, then I can be made Π^1_1 using the methods of (Miller 1989). But that implies only that \mathcal{A} is Σ^1_2.

2. More general: is “$\exists\Pi^1_1$ MAD” equivalent to “$\exists\Sigma^1_2$ MAD”?

3. Does $h > \aleph_1$ imply “$\nexists\Sigma^1_2$ MAD”? (Raghavan’s conjecture.)

4. Related conjecture: does “all Σ^1_2 sets are Ramsey” imply “$\nexists\Sigma^1_2$ MAD”?
Open Questions:

1. Is \(b > \aleph_1 + \exists \Pi^1_1 \text{ MAD} \) consistent?

 Problem: if we write \(A = \bigcup \{ P_x \mid x \in I \} \), where \(I \) is a family of reals coding the perfect sets, then \(I \) can be made \(\Pi^1_1 \) using the methods of (Miller 1989). But that implies only that \(A \) is \(\Sigma^1_2 \).

2. More general: is \(\exists \Pi^1_1 \text{ MAD} \) equivalent to \(\exists \Sigma^1_2 \text{ MAD} \)?

3. Does \(\aleph > \aleph_1 \) imply \(\# \Sigma^1_2 \text{ MAD} \)? (Raghavan’s conjecture.)
Open Questions:

1. Is \(\mathfrak{b} > \aleph_1 + \exists \Pi^1_1 \text{ MAD} \) consistent?

 Problem: if we write \(\mathcal{A} = \bigcup \{ P_x \mid x \in I \} \), where \(I \) is a family of reals coding the perfect sets, then \(I \) can be made \(\Pi^1_1 \) using the methods of (Miller 1989). But that implies only that \(\mathcal{A} \) is \(\Sigma^1_2 \).

2. More general: is \(\exists \Pi^1_1 \text{ MAD} \) equivalent to \(\exists \Sigma^1_2 \text{ MAD} \)?

3. Does \(\mathfrak{b} > \aleph_1 \) imply \(\# \Sigma^1_2 \text{ MAD} \)? (Raghavan’s conjecture.)

4. Related conjecture: does “all \(\Sigma^1_2 \) sets are Ramsey” imply \(\# \Sigma^1_2 \text{ MAD} \)?
Thank you!

Yurii Khomskii

yurii@deds.nl

