
MAD families and the projective hierarchy

Yurii Khomskii
University of Amsterdam

Joint work with Jörg Brendle (Kobe University, Japan)

ASL North American Meeting
University of California Berkeley, 25 March 2011

Yurii Khomskii (University of Amsterdam) Projective MAD families Berkeley, 2011 1 / 15



MAD families

Definition

1 Two sets A,B ∈ [ω]ω are called almost disjoint (a.d.) if A ∩ B is
finite.

2 A family A ⊆ [ω]ω is called almost disjoint (a.d.) if

∀A,B ∈ A (A and B are a.d.)

3 A family A ⊆ [ω]ω is called maximal almost disjoint (MAD) if it is an
infinite a.d. family and maximal with this property.

MAD families can be constucted in ZFC using a well-ordering of [ω]ω.
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Complexity

Via [ω]ω ∼= 2ω, we can talk about the complexity MAD families
(descriptive set theory).

Theorem (Mathias 1977)

There is no analytic MAD family.

Fact

If V = L then there is a Σ1
2 MAD family (use the Σ1

2 well-ordering of [ω]ω).

Theorem (Miller 1989)

If V = L then there is a Π1
1 MAD family.
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Larger models

Question: are there Π1
1/Σ1

2 MAD families in models larger than L?

Definition

Let P be a (proper) forcing. A MAD family A is called P-indestructible if
it remains a MAD family in VP.
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Preservation of Σ1
2 definition

Fact

If A ∈ L is a Σ1
2 P-indestructible MAD family, then in LP it is still Σ1

2.

Proof.

If φ(x) is Σ1
2 and defines A in L, then “φ(x) ∧ x ∈ L” is also Σ1

2 and
defines A in LP.
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Preservation of Π1
1 definition

Fact (Friedman & Zdomskyy 2010)

If A ∈ L is a Π1
1 P-indestructible MAD family, then in LP it is still Π1

1.

Proof.

Let φ(x) define A in L, then in LP it defines a larger family A′. But the
statement “∀x∀y (φ(x) ∧ φ(y)→ x ∩ y is finite)” has complexity Π1

2 and
holds in L, so by Shoenfield absoluteness, it holds in LP. Therefore A′ is
a.d., but since A ⊆ A′ and A is maximal, it must be the case that
A = A′. Therefore A has a Π1

1 definition.
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Models of ¬CH

Well-known: for (iterations of) many standard forcing notions P,
including Cohen-, random-, Sacks- and Miller forcing, there are
P-indestructible MAD families.

Also known: such constructions can be made Π1
1 in L (Miller 1989,

Kastermans et al 2008).

Corollary

CON(¬CH + ∃Π1
1 MAD).
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Dominating reals

Well-known: if A is MAD and P adds a dominating real (i.e., a real
which dominates all ground model reals), then A is no longer MAD in
VP.

Questions:

Is “b > ℵ1 + ∃Σ1
2 MAD” consistent?

Is “b > ℵ1 + ∃Π1
1 MAD” consistent?
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Dominating reals

Friedman & Zdomskyy 2010: CON(b > ℵ1 + ∃Π1
2 MAD family).

Raghavan (unpublished): if t > ℵ1 then @Σ1
2 MAD.

To build a model of “b > ℵ1 + ∃Σ1
2 MAD”, previous methods don’t

suffice, because they only produce MAD families A ⊆ L.

To avoid this problem, we consider MAD families defined by
ℵ1-unions of perfect sets.
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ℵ1-perfect MAD

Definition

1 An ℵ1-perfect MAD is a MAD family A such that
A =

⋃
{Pα | α < ℵ1}, where Pα is a perfect set.

2 An ℵ1-perfect MAD A is P-indestructible if in VP,
AVP

:=
⋃
{PVP

α | α < ℵ1} is MAD.

NB. If P adds a dominating real, it will destroy the ℵ1-union of the old
perfect sets, but not necessarily that of the new perfect sets.
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Main result

Theorem (Brendle-Kh.)

CON(b > ℵ1 + ∃Σ1
2 MAD).

Recall:

Hechler forcing D consist of conditions (s, f ) ∈ ω<ω × ωω with s ⊆ f ,
ordered by

(s ′, f ′) ≤ (s, f ) ⇐⇒ s ⊆ s ′ and f ≤ f ′

D generically adds a dominating real.

D preserves splitting families: if S ⊆ [ω]ω is a splitting family in V
then it is still a splitting family in VD.

To prove the theorem, it suffices to construct a D-indestructible,
Σ1

2-definable, ℵ1-perfect MAD family in L.
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Proof

Proof: By simultaneous induction, construct a sequence 〈Pα | α < ω1〉 of
perfect a.d. sets, and an increasing sequence 〈Mα | α < ω1〉 of countable
models, such that the following conditions are satisfied:

(1)
⋃
α<ω1

Mα covers all the reals,

(2) Pα ∈ Mα for all α,

(3) For all α, β and all a ∈ Pα, b ∈ Pβ, |a ∩ b| < ω, and

(4) For all α and all Y ∈ [ω]ω ∩Mα: if Y is a.d. from
⋃
ξ≤α Pξ,

then it is not a.d. from Pα+1.

To satisfy (4), Pα+1 is constructed from Cohen reals over Mα and using
the fact that Cohen reals are splitting reals.

(4′) Let G be generic for the ℵ2-iteration of D.
For all α and all Y ∈ [ω]ω ∩Mα[G ]: if Y is a.d. from⋃
ξ≤α P

V[G ]
ξ , then it is not a.d. from P

V[G ]
α+1 .
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Proof

Let A :=
⋃
α<ω1

Pα. Note that A can easily be made Σ1
2.

In L: why is A MAD? Take Y ∈ [ω]ω. Let α be such that Y ∈ Mα,
apply condition (4) and we are done.

In the ℵ2-iteration of D: why does A survive? Take Y ∈ L[G ]. Let Ẏ
be a name for Y .

First attempt: let α be such that Ẏ ∈ Mα. Then Y ∈ Mα[G ], so apply
condition (4′) and we are done.

Problem:
⋃
α<ω1

Mα cannot cover all names for reals, because we are
dealing with an ℵ2-iteration.

First attempt: let α be such that Ẏ ∈ Mα. Then Y ∈ Mα[G ], so apply
condition (4′) and we are done.
Second attempt: Let N be a countable model such that Ẏ ∈ N. Now
let α be such that Mα ∩ ωω = N ∩ ωω. Then N and Mα contain the
same Pξ for ξ ≤ α and agree on splitting reals. Hence (4′) applies also
with N instead of Mα.
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condition (4′) and we are done.

Problem:
⋃
α<ω1

Mα cannot cover all names for reals, because we are
dealing with an ℵ2-iteration.

First attempt: let α be such that Ẏ ∈ Mα. Then Y ∈ Mα[G ], so apply
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let α be such that Mα ∩ ωω = N ∩ ωω. Then N and Mα contain the
same Pξ for ξ ≤ α and agree on splitting reals. Hence (4′) applies also
with N instead of Mα.

Yurii Khomskii (University of Amsterdam) Projective MAD families Berkeley, 2011 13 / 15



Proof

Let A :=
⋃
α<ω1

Pα. Note that A can easily be made Σ1
2.

In L: why is A MAD? Take Y ∈ [ω]ω. Let α be such that Y ∈ Mα,
apply condition (4) and we are done.

In the ℵ2-iteration of D: why does A survive? Take Y ∈ L[G ]. Let Ẏ
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condition (4′) and we are done.
Second attempt: Let N be a countable model such that Ẏ ∈ N. Now
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Now
let α be such that Mα ∩ ωω = N ∩ ωω. Then N and Mα contain the
same Pξ for ξ ≤ α and agree on splitting reals. Hence (4′) applies also
with N instead of Mα.

Yurii Khomskii (University of Amsterdam) Projective MAD families Berkeley, 2011 13 / 15



Proof

Let A :=
⋃
α<ω1

Pα. Note that A can easily be made Σ1
2.

In L: why is A MAD? Take Y ∈ [ω]ω. Let α be such that Y ∈ Mα,
apply condition (4) and we are done.

In the ℵ2-iteration of D: why does A survive? Take Y ∈ L[G ]. Let Ẏ
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Questions

Open Questions:

1 Is “b > ℵ1 + ∃Π1
1 MAD” consistent?

Problem: if we write A =
⋃
{Px | x ∈ I}, where I is a family of reals coding

the perfect sets, then I can be made Π1
1 using the methods of (Miller 1989).

But that implies only that A is Σ1
2.

2 More general: is “∃Π1
1 MAD” equivalent to “∃Σ1

2 MAD”?

3 Does h > ℵ1 imply “@Σ1
2 MAD”? (Raghavan’s conjecture.)

4 Related conjecture: does “all Σ1
2 sets are Ramsey” imply “@Σ1

2

MAD”?
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