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Players I and II play natural numbers in turn:

I : x0 x1 . . .

II : y0 y1 . . .

Let x := 〈x0, y0, x1, y1, . . . 〉 ∈ ωω.
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Let x := 〈x0, y0, x1, y1, . . . 〉 ∈ ωω.

Let A ⊆ ωω be a payoff set . Player I wins G(A) iff x ∈ A.
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Let A ⊆ ωω be a payoff set . Player I wins G(A) iff x ∈ A.

A set A ⊆ ωω is determined if either I or II has a winning
strategy in the game G(A).
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Games in Set Theory

Players I and II play natural numbers in turn:

I : x0 x1 . . .

II : y0 y1 . . .

Let x := 〈x0, y0, x1, y1, . . . 〉 ∈ ωω.

Let A ⊆ ωω be a payoff set . Player I wins G(A) iff x ∈ A.

A set A ⊆ ωω is determined if either I or II has a winning
strategy in the game G(A).

The Axiom of Determinacy says “every set of reals is
determined”.
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Axiom of Determinacy

AD contradicts the Axiom of Choice,

AD → all sets of reals are Lebesgue-measurable,

AD → all sets of reals have the Baire property,

AD → all sets of reals have the perfect set property.
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Axiom of Determinacy

AD contradicts the Axiom of Choice,

AD → all sets of reals are Lebesgue-measurable,

AD → all sets of reals have the Baire property,

AD → all sets of reals have the perfect set property.

Question: is it true that “A is determined” → “A is regular”?
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Class-wise implication

No, because the games used involve coding . But if Γ is a
collection of sets closed under some natural operations,
then

Every set in Γ

is determined
⇒

every set in Γ

is regular
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Class-wise implication

No, because the games used involve coding . But if Γ is a
collection of sets closed under some natural operations,
then

Every set in Γ

is determined
⇒

every set in Γ

is regular

Example: Γ ⊆ Det → Γ ⊆ BP.
Proof:

• Define the Banach-Mazur game, G∗∗.

• Encode A A′ so that G∗∗(A) ≡ G(A′).

• Then: I wins G(A′) ⇐⇒ A is comeager in an open set
II wins G(A′) ⇐⇒ A is meager.

• If A ∈ Γ then A′ ∈ Γ so G(A′) is determined. Then A is either comeager in an open
set or meager.

• If all sets in Γ have this property, then all sets in Γ have the Baire property.

A General Setting for the Pointwise Investigation of Determinacy – p. 4/19



Point-wise implication

Benedikt Löwe: What is the strength of the statement “A is
determined”?

The pointwise view of determinacy: arboreal forcings, meas urability, and

weak measurability , Rocky Mountains Journal of Mathematics 35 (2005)
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Point-wise implication

Benedikt Löwe: What is the strength of the statement “A is
determined”?

The pointwise view of determinacy: arboreal forcings, meas urability, and

weak measurability , Rocky Mountains Journal of Mathematics 35 (2005)

(AC) Sets can be deter-
mined but not regular .

Setting used: Arboreal forcing notions and their algebras of
measurability.
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Arboreal Forcings

Definition:

Arboreal forcing: a partial order (P,≤) of trees (closed
sets of reals) on ω or 2 ordered by inclusion, and

∀P ∈ P ∀t ∈ P (P↑t ∈ P)

An arboreal (P,≤) is called topological if {[P ] | P ∈ P}
is a topology base on ωω or 2ω. Otherwise, it is called
non-topological .
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Examples

Some examples: (non-topological)

Sacks forcing S: all perfect trees.

Miller forcing M: all super-perfect trees.

Laver forcing L: all trees with finite stem and
afterwards ω-splitting.
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Examples (2)

Some examples: (topological)

Cohen forcing C: basic open sets [s].

Hechler forcing D: for s ∈ ω<ω and f ∈ ωω

with s ⊆ f , define [s, f ] := {x ∈ ωω | s ⊆

x ∧ ∀n ≥ |s|(x(n) ≥ f(n))}.
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Regularity Properties

Various ways of associating regularity properties to P.
Definition:

For P non-topological: Marczewski-Burstin algebra:
A ∈ MB(P) :⇐⇒ ∀P ∈ P ∃Q ≤ P ([Q] ⊆ A ∨ [Q] ∩ A = ∅)
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Regularity Properties

Various ways of associating regularity properties to P.
Definition:

For P non-topological: Marczewski-Burstin algebra:
A ∈ MB(P) :⇐⇒ ∀P ∈ P ∃Q ≤ P ([Q] ⊆ A ∨ [Q] ∩ A = ∅)

For P topological :

BP(P) := {A | A has the Baire property in (ωω, P)}
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So far. . .

Löwe considered non-topological forcings and MB(P).
Under AC, there are sets which are determined but not
in MB(P).
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Löwe considered non-topological forcings and MB(P).
Under AC, there are sets which are determined but not
in MB(P).

Use the following “more mathematical” characterization
of determinacy:

A tree σ is a strategy for Player I if all nodes of odd length are totally splitting and
all nodes of even length are non-splitting.

A tree τ is a strategy for Player II if all nodes of even length are totally splitting
and all nodes of odd length are non-splitting.

A set A is determined if there is a σ such that [σ] ⊆ A or τ such that [τ ] ∩ A = ∅.
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So far. . .

Löwe considered non-topological forcings and MB(P).
Under AC, there are sets which are determined but not
in MB(P).

Use the following “more mathematical” characterization
of determinacy:

A tree σ is a strategy for Player I if all nodes of odd length are totally splitting and
all nodes of even length are non-splitting.

A tree τ is a strategy for Player II if all nodes of even length are totally splitting
and all nodes of odd length are non-splitting.

A set A is determined if there is a σ such that [σ] ⊆ A or τ such that [τ ] ∩ A = ∅.

Using a Bernstein-style diagonalization procedure, find
A which is deteremined but not in MB(P).
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So far. . .

This setting was problematic: difficulty with generalizing
to “weak” version of MB, and no clear generalization for
topological forcings (Baire property).

Need new definition.
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Measurability

Definition:

P-nowhere-dense :

A ∈ NP :⇐⇒ ∀P ∈ P ∃Q ≤ P ([Q] ∩ A = ∅)
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Measurability

Definition:

P-nowhere-dense :

A ∈ NP :⇐⇒ ∀P ∈ P ∃Q ≤ P ([Q] ∩ A = ∅)

P-meager : A ∈ IP iff if it is a countable union of P-nowhere-dense sets.
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Measurability

Definition:

P-nowhere-dense :

A ∈ NP :⇐⇒ ∀P ∈ P ∃Q ≤ P ([Q] ∩ A = ∅)

P-meager : A ∈ IP iff if it is a countable union of P-nowhere-dense sets.

Write A ⊆∗ B for A \ B ∈ IP. P-measurable :

A ∈ Meas(P) :⇐⇒ ∀P ∈ P ∃Q ≤ P ([Q] ⊆∗ A ∨ [Q] ⊆∗ Ac)
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Measurability

P-measurability is a natural generalization of the above
situations.

1. If IP = NP (fusion argument) then Meas(P) = MB(P)

2. If P is topological, then Meas(P) = Baire property in the
P-topology.

Both 1 and 2 can hold at the same time, e.g., Matthias
forcing (Baire property in Ellentuck topology = Completely
Ramsey).
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Main Theorem 1

Theorem: (AC) There is a determined set which is not in
Meas(P).
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Main Theorem 1

Theorem: (AC) There is a determined set which is not in
Meas(P).

Proof:
• If A ∈ Meas(P) then for every P there is a perfect tree T in [P ] such that [T ] ⊆ A or

[T ] ∩ A = ∅.
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Meas(P).

Proof:
• If A ∈ Meas(P) then for every P there is a perfect tree T in [P ] such that [T ] ⊆ A or

[T ] ∩ A = ∅.

• Find a P ∈ P and a strategy σ such that [P ] ∩ [σ] = ∅.
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Main Theorem 1

Theorem: (AC) There is a determined set which is not in
Meas(P).

Proof:
• If A ∈ Meas(P) then for every P there is a perfect tree T in [P ] such that [T ] ⊆ A or

[T ] ∩ A = ∅.

• Find a P ∈ P and a strategy σ such that [P ] ∩ [σ] = ∅.

• Let
˙

Tα | α < 2ℵ0

¸

enumerate all perfect trees in [P ].
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Main Theorem 1

Theorem: (AC) There is a determined set which is not in
Meas(P).

Proof:
• If A ∈ Meas(P) then for every P there is a perfect tree T in [P ] such that [T ] ⊆ A or

[T ] ∩ A = ∅.

• Find a P ∈ P and a strategy σ such that [P ] ∩ [σ] = ∅.

• Let
˙

Tα | α < 2ℵ0

¸

enumerate all perfect trees in [P ].

• Since also |Tα| = 2ℵ0 , we find two Bernstein components A and B with A ∩ B = ∅

and
∀α < 2ℵ0 (A ∩ [Tα] 6= ∅ ∧ B ∩ [Tα] 6= ∅)
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Main Theorem 1

Theorem: (AC) There is a determined set which is not in
Meas(P).

Proof:
• If A ∈ Meas(P) then for every P there is a perfect tree T in [P ] such that [T ] ⊆ A or

[T ] ∩ A = ∅.

• Find a P ∈ P and a strategy σ such that [P ] ∩ [σ] = ∅.

• Let
˙

Tα | α < 2ℵ0

¸

enumerate all perfect trees in [P ].

• Since also |Tα| = 2ℵ0 , we find two Bernstein components A and B with A ∩ B = ∅

and
∀α < 2ℵ0 (A ∩ [Tα] 6= ∅ ∧ B ∩ [Tα] 6= ∅)

• Let A′ := A ∪ [σ]. Then for no perfect
tree T in [P ] do we have [T ] ⊆ A′ or
[T ] ∩ A′ = ∅, so neither A′ nor its com-
plement is in Meas(P). But either A′ or
its complement is determined.
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Weak Measurability

Replace measurability by a weak (local) version.

Definition: A is weakly P-measurable :
A ∈ wMeas(P) :⇐⇒ ∃P ([P ] ⊆∗ A ∨ [P ] ⊆∗ Ac)
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Weak Measurability

Replace measurability by a weak (local) version.

Definition: A is weakly P-measurable :
A ∈ wMeas(P) :⇐⇒ ∃P ([P ] ⊆∗ A ∨ [P ] ⊆∗ Ac)

Question: does “A is determined” at least imply “A is
weakly P-measurable”?

Answer: there is a simple dichotomy.
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Two Cases

Case 1. For every strategy σ, there exists a P ∈ P such
that [P ] ⊆ [σ].

Case 2. Some strategy σ is P-nowhere-dense.

It is not hard to see that this case distinction is exhaustive.
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Main Theorem 2

Theorem:

In case 1, Det → wMeas.

In case 2, Det 6→ wMeas.
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Main Theorem 2

Theorem:

In case 1, Det → wMeas.

In case 2, Det 6→ wMeas.

Proof:

• Case 1: trivial.

• Case 2. Fix a σ which is P-nowhere-dense. Use this to show that for every
A ∈ wMeas(P) there is a perfect tree T disjoint from σ, s.t. [T ] ⊆ A or [T ] ⊆ Ac.
Now proceed similarly as before (using diagonalization).
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Main Theorem 2

Theorem:

In case 1, Det → wMeas.

In case 2, Det 6→ wMeas.

Proof:

• Case 1: trivial.

• Case 2. Fix a σ which is P-nowhere-dense. Use this to show that for every
A ∈ wMeas(P) there is a perfect tree T disjoint from σ, s.t. [T ] ⊆ A or [T ] ⊆ Ac.
Now proceed similarly as before (using diagonalization).

Examples: Sacks and Miller forcing belong to Case 1, the
other standard arboreal forcings to Case 2.
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Other applications

We can adapt the methods used to compare measurability
algebras of forcing notions. For example:
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Other applications

We can adapt the methods used to compare measurability
algebras of forcing notions. For example:
Proposition. wMeas(P) 6⊆ Meas(Q) for all P, Q.

Definition. P is thinner than Q if ∀Q ∈ Q ∃P ∈ P s.t. P ⊆ Q.
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Other applications

We can adapt the methods used to compare measurability
algebras of forcing notions. For example:
Proposition. wMeas(P) 6⊆ Meas(Q) for all P, Q.

Definition. P is thinner than Q if ∀Q ∈ Q ∃P ∈ P s.t. P ⊆ Q.

Proposition. If Q is thinner than P than wMB(P) ⊆ wMeas(Q). Otherwise
wMB(P) 6⊆ wMeas(Q).
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Other applications

We can adapt the methods used to compare measurability
algebras of forcing notions. For example:
Proposition. wMeas(P) 6⊆ Meas(Q) for all P, Q.

Definition. P is thinner than Q if ∀Q ∈ Q ∃P ∈ P s.t. P ⊆ Q.

Proposition. If Q is thinner than P than wMB(P) ⊆ wMeas(Q). Otherwise
wMB(P) 6⊆ wMeas(Q).

Proposition. If P is not thinner than Q then Meas(P) 6⊆ Meas(Q).
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Thank you!

Yurii Khomskii
yurii@deds.nl
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