Set Theory Project: Introduction to Forcing

Assignment 1

Part A: formal theory and meta-theory

- 1. For each of the following statements, determine whether they are made in the formal language of set theory, or in a meta-language.¹
 - (a) Every convergent sequence in \mathbb{R} is bounded from above.
 - (b) ZFC \vdash "Every convergent sequence in \mathbb{R} is bounded from above".
 - (c) ZFC is consistent.
 - (d) The language of set theory consists of one binary relation symbol \in .
 - (e) ZFC $\nvdash \forall \alpha \in Ord \ (\alpha = \emptyset)$.
 - (f) ZFC contains infinitely many axioms.
 - (g) " $\forall x \forall y (x = y)$ " is not an axiom of ZFC.
 - (h) The addition operation on the ordinals is not commutative.
 - (i) Ord (the class of all ordinals) is not a set.
 - (i) There are classes which are not sets.
- 2. Consider the following informally stated assertion:

"For every proper class A and every set X, there exists an injective function $f:X\to A$."

- (a) Write down the above statement formally. You may use the abbreviations "f is a function", "dom(f)" and "ran(f)" without writing them out in detail.
- (b) Is this a statement in the formal language or the meta-language?
- (c) Prove the above assertion (using an informal argument which is, in principle, formalizable in ZFC).
- 3. Find the mistake in the argument below.

Theorem. ZFC is inconsistent.

Proof. Let $\{\theta_n : n < \omega\}$ be an enumeration of all formulas of \mathcal{L}_{\in} with exactly one free variable. Let $\psi(x)$ be the formula " $x \in \omega \land \neg \theta_x(x)$ ". Since ψ is a formula of \mathcal{L}_{\in} in one free variable, there exists $e \in \omega$ such that $\psi = \theta_e$. But then $\mathsf{ZFC} \vdash \theta_e(e) \leftrightarrow \psi(e) \leftrightarrow \neg \theta_e(e)$.

Remark: The "correct" version of the above argument proves Tarski's theorem on the undefinability of the Truth Predicate, i.e., there is no predicate T such that for any formula φ , ZFC $\vdash T(\ulcorner \varphi \urcorner) \leftrightarrow \varphi$, where $\ulcorner \varphi \urcorner$ denotes a recursive coding of the syntax by natural numbers (or some other way).

¹Note that any statement in the meta-language can also be formalized as a statement in the formal language. So this exercise talks about the most natural/obvious meaning.

Part B: relativization and relative consistency

- 1. (a) Recall that Δ_0 formulas are absolute for all transitive models of set theory. A formula is called Σ_1 if it has the form $\exists x_0 \dots \exists x_k \theta$ for a Δ_0 -formula θ , and Π_1 if it has the form $\forall x_0 \dots \forall x_k \theta$ for a Δ_0 -formula θ . Show that for all transitive models of set theory and all Σ_1 -formulas ϕ we have $\phi^M \to \phi$, while for all Π_1 -formulas ψ we have: $\psi \to \psi^M$ (we call the former upwards absoluteness and the latter downwards absoluteness).
 - (b) In general, the properties "being a cardinal", "being of the same cardinality" and similar statements are not absolute for transitive models. Show that the statement "|x| = |y|" is upwards absolute for transitive models, and the statement " κ is a cardinal" is downwards absolute for transitive models (you may use the fact that "f is a function", "f is a bijection", " α is an ordinal", and the concepts dom(f) and ran(f) are all Δ_0 and therefore absolute).
- 2. (a) Let $F: V \to V$ be a bijective class-function. Define $E \subseteq V \times V$ by:

$$xEy :\Leftrightarrow x \in F(y).$$

We claim that (V, E) is a model of ZFC – Foundation. Choose any two axioms of ZFC – Foundation, and prove that they hold in (V, E).

(b) Use the previous claim to show

$$Con(ZFC) \rightarrow Con(ZFC - Foundation + "\exists x (x = \{x\})")$$

[Hint: use F(0) := 1 and F(1) := 0].

Part C: Reflection and elementary submodels

- 1. Prove the following:
 - (a) Let M be an elementary submodel of N, i.e., $(M, \in) \leq (N, \in)$. Let $c \in N$ be an element which is uniquely definable in N; that means that there exists a formula $\phi(x)$ such that

$$N \models \forall x \ (\phi(x) \leftrightarrow x = c).$$

Then $c \in M$.

- (b) If $M \preceq H_{\omega_2}$ then $\omega_1 \in M$.
- (c) If $M \preceq V_{\omega}$ then $M = V_{\omega}$.

Hint: Prove, by \in -induction, that every $x \in V_{\omega}$ is uniquely definable in V_{ω} (in the sense of (a)).

- 2. Let $M \preceq H_{\omega_2}$ be a *countable* elementary submodel. Note that M is *not transitive*.
 - (a) Give an example of a set x such that $x \in M$ but $x \not\subseteq M$, and a set y such that $y \subseteq M$ but $y \notin M$.
 - (b) Suppose $y \subseteq M$ and y is finite. Then $y \in M$.
 - (c) Suppose $x \in M$ and x is countable. Then $x \subseteq M$.

(Hint: $H_{\omega_2} \models \text{there is a surjection from } \omega \text{ to } x. \text{ Another hint: } \omega \in M.$)