Homework Week 9 Due 7 January 2019

- (a) Write down the ℙ-name Š in detail. [1 point]
 (b) Let τ = {(Ø, p), ({(Ø, q)}, r)}. Compute τ_G for each of the 8 possibilities for p, q, r being ∈ G or ∉ G. [2 points]
- 2. In the lecture we saw that if \mathbb{P} is non-atomic, then \mathbb{P} -generic filters over M are not in M. Prove the converse: if \mathbb{P} is atomic (i.e., not non-atomic), then there exists a $G \in M$ which is a \mathbb{P} -generic filter over M. [2 points]

[*Hint:* let $G = \{p : p || r\}$ for suitable r.]

- 3. A subset $D \subseteq \mathbb{P}$ is called *dense below* p if $\forall q \leq p \exists r \leq q \ (r \in D)$.
 - (a) Let $D \subseteq \mathbb{P}$. Show that, if $\{q : D \text{ is dense below } q\}$ is dense below p, then D is dense below p. [1 point]
 - (b) Show that if $D \in M$ is dense below p and G is \mathbb{P} -generic over M, then

$$p \in G \to G \cap D \neq \emptyset$$
 [2 points]

4. Let \mathbb{P} be non-atomic and let M be a countable transitive model. Prove that

 $|\{G: G \text{ is a } \mathbb{P}\text{-generic filter over } M\}| = 2^{\aleph_0}.$ [2 points]