1. (a) Write down the \mathbb{P}-name 3 in detail. [1 point]

 (b) Let $\tau = \{(\emptyset, p), ([\emptyset, q], r)\}$. Compute τ_G for each of the 8 possibilities for p, q, r being $\in G$ or $\notin G$. [2 points]

2. In the lecture we saw that if \mathbb{P} is non-atomic, then \mathbb{P}-generic filters over M are not in M. Prove the converse: if \mathbb{P} is atomic (i.e., not non-atomic), then there exists a $G \in M$ which is a \mathbb{P}-generic filter over M. [2 points]

 [Hint: let $G = \{p : p \parallel r\}$ for suitable r.]

3. A subset $D \subseteq \mathbb{P}$ is called dense below p if $\forall q \leq p \exists r \leq q (r \in D)$.

 (a) Let $D \subseteq \mathbb{P}$. Show that, if $\{q : D \text{ is dense below } q\}$ is dense below p, then D is dense below p. [1 point]

 (b) Show that if $D \in M$ is dense below p and G is \mathbb{P}-generic over M, then

 $$p \in G \Rightarrow G \cap D \neq \emptyset$$

 [2 points]

4. Let \mathbb{P} be non-atomic and let M be a countable transitive model. Prove that

 $$|\{G : G \text{ is a } \mathbb{P}\text{-generic filter over } M\}| = 2^{\aleph_0}.$$ [2 points]