Homework Week 8 Due 17 December 2018

Recall the following definitions from topology:

Definition. A set $X \subseteq \mathbb{R}$ is **dense** if on every rational open interval (p,q) (i.e., $p < q \in \mathbb{Q}$), we have $X \cap (p,q) \neq \emptyset$. A set $X \subseteq \mathbb{R}$ is **somewhere dense** if for some (p,q), the set $X \cap (p,q)$ is dense in (p,q). A set $X \subseteq \mathbb{R}$ is **nowhere dense** if it is not somewhere dense, i.e., if

 $\forall p < q \in \mathbb{Q} \; \exists p', q' \in \mathbb{Q} \text{ s.t. } p \leq p' < q' \leq q \text{ and } (p', q') \cap X = \varnothing.$

(alternatively, a set X is nowhere dense if its closure has empty interior, i.e., $\overline{X}^{\circ} = \emptyset$, but this is harder to use than the above definition).

By the Baire Category Theorem, the whole space \mathbb{R} cannot be covered by countably many nowhere dense sets (a countable union of nowhere dense sets is called **meager** or **of first category**). Can \mathbb{R} be covered by \aleph_1 -many nowhere dense sets? Clearly, if CH holds then $\mathbb{R} = \bigcup_{r \in \mathbb{R}} \{r\}$ is an \aleph_1 -union of singletons, each singleton being nowhere dense. The aim of this exercise is to prove the following Theorem:

Theorem 0.1. If $MA + \neg CH$ holds, then \mathbb{R} cannot be covered by \aleph_1 -many nowhere dense sets.

Consider the forcing \mathbb{P} whose conditions are intervals $[p,q] \subseteq \mathbb{R}$, with $p,q \in \mathbb{Q} \cup \{-\infty, +\infty\}$ and p < q (and $[-\infty,q]$ just means $(-\infty,q]$ etc., and we also assume $-\infty < q < +\infty$ for all $q \in \mathbb{Q}$).

The conditions are ordered by: $[p',q'] \leq_{\mathbb{P}} [p,q]$ iff $[p',q'] \subseteq [p,q]$ (iff $p \leq p' < q' \leq q$). The weakest condition $\mathbf{1}_{\mathbb{P}}$ is $(-\infty, +\infty) = \mathbb{R}$.

1. Why does \mathbb{P} have the ccc?

[1 point]

- 2. Write down what it means for [p, q] and [p', q'] to be compatible. [1 point]
- 3. Let $G \subseteq \mathbb{P}$ be a filter. Show that, in general, we could have $\bigcap G = \emptyset$. [2 points]
- 4. Let $D := \{[p,q] : p,q \notin \{-\infty, +\infty\}\}$. Show that this set is dense and, if $G \cap D \neq \emptyset$, then $\bigcap G \neq \emptyset$. [3 points]

[Hint: use the compactness of [p, q], and the fact that finitely many conditions in G are all compatible with each other.]

- 5. Now, assume that $\{X_{\alpha} : \alpha < \kappa\}$ is a collection of nowhere dense sets. Define a collection \mathscr{D} of \mathbb{P} -dense sets, with $|\mathscr{D}| = \kappa$, such that, if $G \subseteq \mathbb{P}$ is generic for $\mathscr{D} \cup \{D\}$ then $\bigcap G \cap X_{\alpha} = \varnothing$ for all $\alpha < \kappa$ (also prove that the sets you constructed are dense). Conclude the statement of the theorem. [3 points]
- 6. (BONUS) Define a **countable** collection \mathscr{E} of \mathbb{P} -dense sets, such that, if G is \mathscr{E} -generic, then $\forall \epsilon > 0 \ \exists [p,q] \in G \ (q-p < \epsilon)$. Conclude from this, that if G is \mathscr{E} -generic, then $\bigcap G = \{x_G\}$, for a unique point $x_G \in \mathbb{R}$. [2 bonus point]