Homework Week 7 Due 10 December 2018

- 1. Let \mathbb{P} be a forcing-partial order and $A \subseteq \mathbb{P}$. A is called a *maximal antichain* in case it is an antichain (i.e., all $p, q \in A$ are incompatible) which cannot be extended to a larger antichain (i.e., for every $p \in \mathbb{P}$ there is a $q \in A$ which is compatible to p. Show:
 - (a) If $A \subseteq \mathbb{P}$ is a maximal antichain, then $\{q \in \mathbb{P} \mid \exists p \in A \ (q \leq p)\}$ is a dense subset of \mathbb{P} . [1 point]
 - (b) (AC) If $D \subseteq \mathbb{P}$ is a dense set, then there exists a maximal antichain $A \subseteq D$. [2 points]
 - (c) The following are equivalent for all κ :
 - i. if $\{D_{\alpha} \mid \alpha < \kappa\}$ is a collection of dense sets, then there exists a filter G, such that $G \cap D_{\alpha} \neq \emptyset$ for all $\alpha < \kappa$.
 - ii. if $\{A_{\alpha} \mid \alpha < \kappa\}$ is a collection of maximal antichains, then there exists a filter G, such that $G \cap A_{\alpha} \neq \emptyset$ for all $\alpha < \kappa$. [2 points]

(Thus, in the definition of " \mathscr{D} -generic filter" in the statement of Martin's Axiom, and later forcing, it does not matter whether we consider dense subsets of \mathbb{P} or maximal antichains in \mathbb{P} .)

- 2. Let $\mathbb{C} = (\omega^{<\omega}, \supseteq, \emptyset)$ be the Cohen-forcing partial order, i.e., the forcing conditions are finite functions $p: n \to \omega$, and the ordering is given by $q \leq p$ iff $q \supseteq p$ iff $q \upharpoonright \operatorname{dom}(p) = p$.
 - (a) Let $G \subseteq \mathbb{C}$ be a filter. Show that $f_G := \bigcup G$ is a function with dom $(f_G) \subseteq \omega$ and ran $(f_G) \subseteq \omega$. [2 points]
 - (b) For each n, let $D_n := \{p \in \mathbb{C} : n \in \text{dom}(p)\}$, and $R_n := \{p \in \mathbb{C} : n \in \text{ran}(p)\}$. Show that all D_n and all R_n are dense. [1 point]
 - (c) Let G be a filter which is generic for the collection $\mathscr{D} = \{D_n, R_n : n < \omega\}$. Show that $f_G := \bigcup G$ is a function with $\operatorname{dom}(f_G) = \operatorname{ran}(f_G) = \omega$. [2 points]