1. Recall that a set $X \subseteq \mathbb{N}$ is called PA-representable if there exists a formula ϕ such that for all n we have

$$n \in X \iff \text{PA} \vdash \phi(\dot{n})$$

$$n \notin X \iff \text{PA} \vdash \neg \phi(\dot{n})$$

Likewise, for a theory T we say that a set X is T-representable if the same holds with T instead of PA.

(a) Show that $X := \{p : p$ is a prime number$\}$ is PA-representable. [1 point]

(b) Show that if $\text{PA} \subseteq T$ and T is consistent, then any X which is PA-representable is also T-representable. [1 point]

(c) Derive the statement “0 is the only number which is not a successor” from the axioms of PA. [1 point]

(d) Show that $\{\phi : \mathcal{A} \models \phi\}$ is consistent and complete for any model \mathcal{A}. [1 point]

2. (a) Define a binary relation $E \subseteq \omega \times \omega$ as follows: nEm holds iff there is a 1 in the n-th place in binary expansion of m (read from the right). For example, the binary expansion of 13 is 1101, therefore we have: $0E13, 1E13, 2E13, 3E13$ and $4 \notin E13$.

Show that $(\omega, E) \cong (\mathbb{V}_\omega, \in)$. [4 points]

(b) Show the relative consistency $\text{Con}(\text{PA}) \to \text{Con}(ZF \setminus \text{INF})$, without assuming any set theory in the meta-theory (note that if ZFC is the meta-theory then the assertion is trivial, since $\mathbb{V}_\omega \models ZF \setminus \text{INF}$). This shows that $ZF \setminus \text{INF}$ is logically not any stronger than PA. [2 points]