Homework Week 6 Due 3 December 2018

1. Recall that a set $X \subseteq \mathbb{N}$ is called PA-*representable* if there exists a formula ϕ such that for all n we have

$$\begin{split} n \in X &\Leftrightarrow \mathsf{PA} \vdash \phi(\dot{n}) \\ n \notin X &\Leftrightarrow \mathsf{PA} \vdash \neg \phi(\dot{n}) \end{split}$$

Likewise, for a theory T we say that a set X is T-representable if the same holds with T instead of PA.

- (a) Show that $X := \{p : p \text{ is a prime number}\}$ is PA-representable. [1 point]
- (b) Show that if $PA \subseteq T$ and T is consistent, then any X which is PA-representable is also T-representable. [1 point]
- (c) Derive the statement "0 is the only number which is not a successor" from the axioms of PA. [1 points]
- (d) Show that $\{\phi : \mathcal{A} \models \phi\}$ is consistent and complete for any model \mathcal{A} . [1 point]
- 2. (a) Define a binary relation $E \subseteq \omega \times \omega$ as follows: nEm holds iff there is a 1 in the *n*-th place in binary expansion of *m* (read from the right). For example, the binary expansion of 13 is 1101, therefore we have: 0E13, $1\not E13$, 2E13, 3E13 and $4\not E13$. Show that $(\omega, E) \cong (V_{\omega}, \in)$. [4 points]
 - (b) Show the relative consistency $\operatorname{Con}(\mathsf{PA}) \to \operatorname{Con}(\mathsf{ZF} \setminus \mathsf{INF})$, without assuming any set theory in the meta-theory (note that if ZFC is the meta-theory then the assertion is trivial, since $V_{\omega} \models \mathsf{ZF} \setminus \mathsf{INF}$). This shows that $\mathsf{ZF} \setminus \mathsf{INF}$ is logically not any stronger than PA . [2 points]