Homework Week 5 Due 26 November 2018

- 1. Let $M \preccurlyeq H_{\omega_2}$ be a *countable* elementary submodel. Note that M is not transitive.
 - (a) Give an example of a set x such that $x \in M$ but $x \not\subseteq M$, and a set y such that $y \subseteq M$ but $y \notin M$. [2 points]

(Hint: use previous homework.)

- (b) Suppose $y \subseteq M$ and y is finite. Then $y \in M$. [2 points]
- (c) Suppose $x \in M$ and x is countable. Then $x \subseteq M$. [2 points]

(*Hint:* $H_{\omega_2} \models$ there is a surjection from ω to x. Another hint: $\omega \in M$.)

- 2. The *height* of a set-model M of set theory, o(M), is defined as $Ord \cap M$. Show that:
 - (a) If M is transitive, then o(M) is an ordinal, it is the least ordinal not in M, and it is a limit ordinal. [1 point]
 - (b) Give an example of a non-transitive set-model $M \models (\mathsf{ZFC} \setminus \mathsf{Power Set})$ such that o(M) is not an ordinal. [1 point]

(*Hint: use Exercise 1*)

(c) Prove that if $M \preccurlyeq H_{\omega_2}$ is countable, then $M \cap \omega_1$ is a countable ordinal. [2 points] (*Hint: use Exercise 1*)