Homework Week 4 Due 12 November 2018

1. (a) Let M be a proper class model of ZFC. Show that for every set x, if $x \subseteq M$ then there exists a set $y \in M$ such that $x \subseteq y$. [2 points]

Hint: Think of V^M_{α}

- (b) Let $M \neq \emptyset$ be any class and assume that for every set x, if $x \subseteq M$ then $x \in M$. Show that then M = V. [2 points]
- 2. Prove the following:
 - (a) Let M be an elementary submodel of N, i.e., $(M, \in) \preccurlyeq (N, \in)$. Let $c \in N$ be an element which is uniquely definable in N; that means that there exists a formula $\phi(x)$ such that

$$N \models \forall x \ (\phi(x) \leftrightarrow x = c).$$

Then $c \in M$.[3 points](b) If $M \preccurlyeq H_{\omega_2}$ then $\omega_1 \in M$.[1 point](c) If $M \preccurlyeq V_{\omega}$ then $M = V_{\omega}$.[2 points]

Hint: Prove, by \in -induction, that every $x \in V_{\omega}$ is uniquely definable in V_{ω} (in the sense of (a)).

3. (BONUS) Find the mistake in the argument below:

[2 bonus points]

Theorem. ZFC is inconsistent.

Proof. The Reflection theorem says: for every finite $F \subseteq \mathsf{ZFC}$, there is a set-model $M \models F$. In other words, every finite $F \subseteq \mathsf{ZFC}$ is satisfiable. But the compactness theorem of first order logic says: if every finite subset of a theory is satisfiable, then the theory itself is satisfiable. Therefore ZFC is satisfiable. All of this is provable in ZFC , hence $\mathsf{ZFC} \vdash \mathsf{Con}(\mathsf{ZFC})$. But by Gödel's Incompleteness Theorem, this implies that ZFC is inconsistent.