Homework Week 3 Due on 5 November 2018

- 1. Prove that if κ is regular, then:
 - (a) For all $x, y \in H_{\kappa}$ we have: |x| = |y| if and only if $H_{\kappa} \models |x| = |y|$. [2 points]
 - (b) For $\lambda < \kappa$ we have: λ is a cardinal if and only if $H_{\kappa} \models (\lambda \text{ is a cardinal})$. [1 point]
 - (c) $H_{\kappa^+} \models \forall x \ (|x| \le \kappa)$. In particular, $H_{\omega_1} \models$ every set is countable. (Therefore Con(ZFC) \rightarrow Con(ZF \ Pow+"every set is countable")). [1 point]
- 2. Show that $V_{\omega+\omega}$ does not satisfy the statement "every well-order is isomorphic to an ordinal". Track the exact instance of Replacement which fails in $V_{\omega+\omega}$. [2 + 1 points]

Hint: define a well-order on $\omega \times 2$.

- 3. Let κ be strongly inaccessible.
 - (a) Show that the following statements are absolute for $H_{\kappa} = V_{\kappa}$, for $\lambda < \kappa$: [2 points]
 - λ is regular.
 - λ ist strongly inaccessible.
 - (b) Use the above to provide an alternative proof of

 $\mathrm{Con}(\mathsf{ZFC}) \to \mathrm{Con}(\mathsf{ZFC}+\text{``there are no inaccessible cardinals''})$

which does not use Gödel's Incompleteness Theorem.

[1 point]

Hint: Consider the *least* strongly inaccessible cardinal, if it exists.