1. This is just to repeat some basic facts about “new” vs. “old” objects and to practice dealing with dense sets which are in M or not in M.

 (a) Let M be a model of ZFC, let $\mathbb{C} = \omega^{<\omega}$ be Cohen forcing and G a \mathbb{C}-generic filter over M. Let $f_G = \bigcup G$. Show that $f_G \in \omega^\omega \setminus M$. \hfill [1 point]

 (b) What’s wrong with the following argument: “Let $f_G \in \omega^\omega$ be as above. Define $D := \{p \in \mathbb{C} : p(n) \neq f_G(n) \text{ for some } n\}$. Clearly this is a dense subset of \mathbb{C}. Therefore $G \cap D \neq \emptyset$. Therefore for some n we have $f_G(n) \neq f_G(n)$ — contradiction!” \hfill [1 point]

2. Let $\mathbb{C} = \omega^{<\omega}$ be Cohen forcing and $M[G]$ a \mathbb{C}-generic extension over M. Show that $f_G := \bigcup G$ has the following property: for every $x \in M$, there are infinitely many $n \in \omega$, such that $x(n) < f_G(n)$ (we say that f_G is an unbounded real over M). \hfill [4 points]

 Hint: for every $x \in \omega^\omega \cap M$ and every $k \in \omega$, define appropriate dense sets

 $$D_{x,k} = \{p \in \mathbb{C} : \exists n \geq k \ldots \}$$

3. Let $a, S \subseteq \omega$ be infinite sets. We say that S splits a if both $a \cap S$ and $a \setminus S$ are infinite (so S splits a into two infinite parts). If $M \subseteq M[G]$ is a generic extension and $S \in M[G]$, then we say that S is a splitting real over M, if for every $a \in [\omega]^\omega \cap M$, S splits a. Clearly, a splitting real S cannot be in M. Show that if f_G is as above, then $\{n : f_G(n) = 0\}$ is a splitting real over M. \hfill [4 points]

 Hint: for every infinite $a \subseteq \omega$ and every $k \in \omega$, define appropriate dense sets $D_{a,k}$.

Homework Week 11
Due 28 January 2019