Homework Week 1

Due on 22 October 2018

- 1. For each of the following statements, determine whether they are made in the formal language of set theory, or in a meta-language.¹ [3 points]
 - (a) Every convergent sequence in \mathbb{R} is bounded from above.
 - (b) ZFC \vdash "Every convergent sequence in \mathbb{R} is bounded from above".
 - (c) All dense countable linear order without end-points are isomorphic to each other.
 - (d) ZFC is consistent.
 - (e) The language of set theory consists of one binary relation symbol \in .
 - (f) If ZFC is consistent, then CH is not a theorem of ZFC.
 - (g) $\forall \alpha \in ON \ (\alpha = \emptyset).$
 - (h) ZFC $\nvDash \forall \alpha \in ON \ (\alpha = \emptyset).$
 - (i) ZFC contains infinitely many axioms.
 - (j) " $\forall x \forall y \ (x = y)$ " is not an axiom of ZFC.
 - (k) The addition operation on the ordinals is not commutative.
 - (1) Ord (the class of all ordinals) is not a set.
 - (m) There are classes which are not sets.
- 2. Consider the following informally stated assertion:

"For every proper class A and every set X, there exists an injective function $f: X \to A$."

- (a) Write down the above statement formally. You may use the abbreviations "f is a function", "dom(f)" and "ran(f)" without writing them out in detail. [3 points]
- (b) Is this a statement in the formal language or the meta-language? [1 point]
- (c) Prove the above assertion (using an informal argument which is, in principle, formalizable in ZFC). [3 points]

 $^{^{1}}$ As mentioned, any statement in the meta-language can also be viewed as a statement in the formal language, so this exercise is about the ordinary/most obvious meaning.