Practice exercises for Monday 3 December

- 1. A theory T is complete if for all φ , either $T \vdash \varphi$ or $T \vdash \neg \varphi$. For a model \mathcal{A} , the theory of \mathcal{A} , denoted by $Th(\mathcal{A})$, is the collection $\{\varphi : \mathcal{A} \models \varphi\}$. Are the following true or false? Give an argument or a counterexample.
 - (a) For every \mathcal{A} , $Th(\mathcal{A})$ is consistent and complete.
 - (b) If T is consistent and complete, then, up to isomorphisms, there is exactly one model \mathcal{A} such that $\mathcal{A} \models T$.
 - (c) For any model \mathcal{A} , if $\mathcal{B} \models Th(\mathcal{A})$ then $\mathcal{A} \cong \mathcal{B}$.
 - (d) For any finite model \mathcal{A} , if $\mathcal{B} \models Th(\mathcal{A})$ then $\mathcal{A} \cong \mathcal{B}$.
 - (e) If T is consistent, complete, and "contains witnesses" (*enthält Beispiele*)—i.e., if $T \vdash \exists x \phi(x)$ then there is a constant \dot{c} such that $T \vdash \phi(\dot{c})$ —then there exists an \mathcal{A} such that $T = Th(\mathcal{A})$.
- 2. Prove that V = L implies that $L_{\kappa} = H_{\kappa}$ for all $\kappa \geq \omega$.