Practice exercises for Monday 5 November

- 1. Let M be any transitive model of ZFC, or "sufficiently much of ZFC" (don't worry exactly how much). Prove that:
 - (a) If $x \subseteq M$ is a finite set, then $x \in M$.
 - (b) $V_{\omega} \subseteq M$ (in particular, all finite ordinals are in M).
 - (c) If $f := \langle x_0, \ldots, x_k \rangle$ is a finite sequence with $x_i \in M$ for all i, then $f \in M$.
- 2. Let *M* be a *countable* transitive model of ZFC, or "sufficiently much of ZFC". Show that $o(M) := \operatorname{Ord} \cap M$ is a countable ordinal $> \omega$.
- 3. Define $\beth_0 := \aleph_0$, $\beth_{\alpha+1} := 2^{\beth_\alpha}$ and $\beth_\lambda = \bigcup_{\alpha < \lambda} \beth_\alpha$ for limits λ .
 - (a) Show that $|V_{\omega+\alpha}| = \beth_{\alpha}$ for all α , and that the Generalized Continuum Hypothesis GCH is the statement

$$\forall \alpha \ (\aleph_{\alpha} = \beth_{\alpha}).$$

- (b) Show that $|H_{\kappa}| = 2^{<\kappa}$ for all $\kappa > \omega$.
- (c) Show that $\kappa > \omega$ is inaccessible if and only if $\beth_{\kappa} = \kappa$.