Practice exercises for Monday 29 October

1. Prove the following in detail: if ϕ and ψ are formulas such that $\mathsf{ZFC}^* \vdash \phi \leftrightarrow \psi$ and ψ is Δ_0 , then ϕ is absolute for transitive models M such that $M \models \mathsf{ZFC}^*$. Here ZFC^* denotes some sufficiently large fragment of ZFC .

Note: this means that when you show that ϕ is "equivalent" to a Δ_0 -formula, you need to be careful how this equivalence is proved! If M does not satisfy sufficiently much of ZFC to prove this "equivalence", then ϕ might fail to be absolute for M even though it is (in ZFC) equivalent to a Δ_0 -formula.

- 2. We want to show that the statement: "the relation R on A is well-founded" is absolute for transitive models M of ZFC^* (where ZFC^* is anything sufficient to prove Lemma 1 below.)
 - (a) **Lemma 1.** (A, R) is well-founded iff there exists a rank function, *i.e.*, a mapping $rk : A \to Ord$ such that $aRb \to rk(a) < rk(b)$.
 - (b) Show that "(A, R) is well-founded" is a Π_1 -statement.
 - (c) Show that "(A, R) is well-founded" is ZFC^{*}-equivalent to a Σ_1 -statement.
 - (d) Formulas which are both (equivalent to) Σ_1 and Π_1 and called Δ_1 . Since they are both downwards- and upwards-absolute, they are absolute for transitive models (which can prove this equivalent).