Practice exercises for Monday 14 January

- 1. (a) Suppose that $\forall p \in \mathbb{P} \; \exists q \leq p \; (q \Vdash \phi)$. Then $\mathbf{1} \Vdash \phi$.
 - (b) Similarly, suppose $p_0 \in \mathbb{P}$ is such that $\forall p \leq p_0 \exists q \leq p \ (q \Vdash \phi)$. Then $p_0 \Vdash \phi$.
 - (c) The following are equivalent:
 - i. $p_0 \Vdash \phi$,
 - ii. $\forall p \leq p_0 \ (p \Vdash \phi)$, and
 - iii. $\{p \le p_0 : p \Vdash \phi\}$ is dense below p_0 .
- 2. (a) For $p \in \mathbb{P}$ and ϕ in the forcing language, we say p decides ϕ if $p \Vdash \phi$ or $p \Vdash \neg \phi$. Show that for every $p \in \mathbb{P}$ and every ϕ , there is $q \leq p$ which decides ϕ .
 - (b) Let τ be a name such that $p \Vdash \tau \in \check{\omega}$. Show that there exists $q \leq p$ and $n \in \omega$ such that $q \Vdash \tau = \check{n}$. We say that q decides τ .
 - (c)* A forcing partial order \mathbb{P} is called σ -closed, if for any decreasing sequence $p_0 \ge p_1 \ge p_2 \ge \ldots$ there exists a condition $q \in \mathbb{P}$ such that $p_n \ge q$ for all n (not all forcings are σ -closed, in fact, all the ones that we have in our lecture are not σ -closed).

Let \dot{f} be a \mathbb{P} -name such that $p_0 \Vdash \dot{f} : \omega \to \omega$. Prove that there exists a function $g : \omega \to \omega$ in M and a $q \leq p$ such that $q \Vdash \dot{f} = \check{g}$.

Conclude form this that if \mathbb{P} is a σ -closed forcing and G is \mathbb{P} -generic over M, then $\omega^{\omega} \cap M = \omega^{\omega} \cap M[G]$ (i.e., \mathbb{P} does not add new functions from ω to ω).