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Alternative Set Theories – Report

Nuno Maia, Uva-ID: 11840072

The presentation adressed the work developed by Graham Priest regarding (1) the philosophical motivations
for a Paraconsistent Set Theory and (2) the techniques to build paraconsistent models using Priest’s Logic
of Paradox (LP).

1

Intuitively, the axioms of näıve set theory

(Comprehension:) ∃y∀x(x ∈ y ↔ φ(x)) (where ‘φ(x)’ denotes a condition on x)

(Extensionality:) ∀z((z ∈ x↔ z ∈ y)↔ x = y)

formalize what it seems to be our intuitive understanding of the notion of ‘set’, being in accordance with
Cantor’s early intuitons on the subject:

By an ”aggregate”, we are to understand any collection into a whole M of definite and separate
objects m of our intuition or our thought’ 1

Further, the axioms seem to guarantee (1) existence: there is a set y of all and only those x such that φ(x);
(2) objectivity: y is an object (in particular, it may be a subject of predication); (3) identity criteria for
individuating different sets. The difficulty with this analysis is that it quickly gives rise to set-theoretical
antionomies and, in particular, Russell’s Paradox: by letting φ(x) := x 6∈ x and by introducing the following
instance of (Comprehension) – ∀x(x ∈ R ↔ x 6∈ x) – we quickly have R ∈ R ↔ R 6∈ R, from where it
follows R ∈ R ∧R 6∈ R.

According to the paraconsistent proposal, the näıve axioms can only be retained by accepting contradic-
tions in our underlying logic – urging a different notion of logical consequence such that it does not validate
ex contradictione quodlibet (A,¬A |= B), in order to avoid explosion in triviality. Historically, since the
paraconsistent approach never gain much avowal, two different responses have been proposed:

• Deny the Law of Excluded Middle (LEM): it is suggested that the paradox depends on an instance of
the LEM (namely, that either R is a member or is not a member of itself) and, therefore, it could be
blocked by denying this principle . However:

– Russell’s paradox can be recreated without LEM: given the way R is constructed we have R ∈
R ↔ R 6∈ R and so, R ∈ R → R 6∈ R; we also know R ∈ R → R ∈ R, from where it follows
R ∈ R → R ∈ R ∧ R 6∈ R. By Non-Contradiction we have ¬(R ∈ R ∧ R 6∈ R) and, by Modus
Tollens, R 6∈ R. Also, since R 6∈ R→ R ∈ R and R 6∈ R→ R 6∈ R (by similar reasoning) we have
R ∈ R. Hence, R ∈ R ∧R 6∈ R.

– There are other set-theoretical paradoxes that do not make essential use of LEM; e.g. Miri-
manoff’s2; Cantor’s paradox3.

• Deny Bivalence: Weak Bochvar-Kleene semantics is an extension of two-valued classical truth-tables,
introducing a third truth-value normally interpreted as ‘indeterminate’/‘paradoxical’. Here, when the
atoms of a compound formula take only classical values, the valuation of the entire formula is also
defined classicaly; but, when an atom of a compound formula takes the value ‘paradoxical’ the entire
formula is rendered ‘paradoxical’ as well. In our case, the formula R ∈ R∧R 6∈ R would not produce an
explicit contradiction since ‘R ∈ R’ is allowed to take an indeterminate value, making the all formula
indeterminate rather than false. However,

1Cantor, G., 1895, Beiträge zur Begründung der transfiniten Mengenlehre, ”mathematische Annalen”, 46; 481-512, tr, in
Contributions to the Founding of the Theory of Transfinite Numbers, New York: Dover 1955.

2Call a sequence of x0, x1, x2, ... such that ... ∈ xn ∈ ... ∈ x2 ∈ x1 ∈ x0 a ‘regress from x0’. Call a set x well-founded if there is
no infinite regress from x. Now, for W = {w | w is well-founded } we have that (1) since all member of W are well-founded, W
is also well-founded which implies W ∈W ; (2) then, there is an infinite regress from W of the form ... ∈W ∈ ... ∈W ∈W ∈W
which implies W 6∈W

3By Cantor’s Theorem, P (V ) is bigger than V – but V is supposed to be the most inclusive of all sets; contradiction!
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– it is unclear how this third-value is exactly to be understood and its introduction seems rather
ad hoc;

– Though we might still want to keep the tautological character of, for example, L ∨ ¬L (even
though L may be neither true nor false), this semantics does not allow to express tautologies. To
circunvent this difficult an assertion operator (A) was introduced to force bivalence: the compound
formula Aα (read as ‘it is true that α’) is true when α is true and false otherwise (that is, when
α takes the value ‘false’ or ‘paradoxical’). As Church noticed4, by introducing the A operator,
Russell’s Paradox can be restored: let φ(x) := ¬A(x ∈ x) and consider the following instance of
(Comprehension) – ∀x(x ∈ R∗ ↔ ¬A(x ∈ x)) – again, we quickly have R∗ ∈ R∗ ↔ ¬(R∗ ∈ R∗),
from where it follows R∗ ∈ R∗ ∧¬(R∗ ∈ R∗). From the way R∗ is constructed, the latter formula
is equivalent to ¬A(R∗ ∈ R∗) ∧ ¬¬A(R∗ ∈ R∗), that is, ¬A(R∗ ∈ R∗) ∧ A(R∗ ∈ R∗) – in
Bochvar-Kleene this formula will always be false.

Since these strategies do yield unnwanted results (in particular, Russell’s Paradox can be rebuilt even
denying LEM or Bivalence), ZF proposes to apply restrictions directly with respect to the nature of sets
(i.e. existence is denied to V,R,W, ...). According to ZF , the domain of the totality of objects in the theory
(namely V ) is not an object of the theory on pain of allowing inconsistent sets such as R. Existence is
denied to V since:

Every set M possesses at least one subset M0 that is not an element of M . 5

for suppose that this was not the case. Then, consider the set M=0 of all elements of M which are not in
themselves. Since M0 ⊂ M it follows, by assumption, M0 ∈ M . If M0 ∈ M0 then, from the way M0 is
constructed, we have M0 6∈ M0. So assume M0 6∈ M0. Again, from the way M0 is constructed, we have
M0 ∈M0. Contradiction! It follows

not all objects x of the domain D can be elements of one and the same set; that is, the domain
D is not itself a set, and that disposes of the Russell antinomy so far we are concerned. 6

Following Priest7, the problem with this proposal is that it goes against ‘Cantor’s Domain Principle (CDP)’:

(CDP:) Each variable pressuposes the existence of its domain of variation 8

I.e. for a sentence containg a variable to have a determinate meaning, the range of the quantifiers governing
the variable must be a determinate totality. However, in ZF variables range over all sets; according to
(CDP), this entails that ZF pressuposes the existence of a domain of variation that corresponds to the
extension of the term ‘set’. However, this set is just V whose existence is denied in ZF . This means
that the intelligibility of ZF presuposes the existence of a set whose existence must be denied on pain of
contradiction:

Now, what is a set? It cannot be the extension of “( ) is set”, since this extension would be
a universal set [. . . ] but there is none. So in standard set theory there is no set/extension
corresponding to our usage of “( ) is a set”. [. . . ] Standard set theory is using a fundamental
notion that cannot be explained by this theory! Or uses a fundamental notion that is incoherent
given that very theory! 9

4Church, A., 1939, Review of Bochvar (1939), ”Journal of Symbolic Logic”, 4; 98-9.
5Zermelo, E., 1908, Untersuchungen über die Grundlagen der Mengenlehre I, ”Mathematische Annalen”, 65: 261-81, tr.

Investigations on the Foundations of Set Theory I, in van Heijenoort, J. 1967, ed. From Frege to Gödel. A source Book in
Mathematical Logic, Harvard: Harvard University Press, pp.199 -215.

6Ibid. idem.
7Priest, G. 2006, In Contradiction: A Study of the Transconsistent, Dordrecht: Martinus Nijhoff, Oxford: Oxford University

Press.
8Cantor’s early formulation states that:

In order for there to be a variable quantity in some mathematical study, the ‘domain’ of its variability must strictly
speaking be known beforehand through definition. However, this domain cannot itself be something variable, since
otherwise each fixed support for the study would collapse.

quoted in Hallet, M., 1984, Cantorian Set Theory and Limitation of Size, Oxford: Clarendon Press.
9Bremer, B., An Introduction to Paraconsistent Logics, Frankfurt a.M.: Peter Lang.
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Priest also notes that both set-theoretical and semantical paradoxes behave according to the same schema
(already discovered by Russel10): Given a property φ and a function δ, consider the following conditions

(1) Ω = {y | φ(y)} exists.
(2) if X is a subset of Ω: (a) δ(X) 6∈ X and (b) δ(X) ∈ Ω

given these conditions, we have a contradiction, when we let X = Ω and we have δ(Ω) ∈ Ω and δ(Ω) 6∈ Ω.
As an example:

Russell’s Paradox: Let Ω = {x | φ(x)} where φ(x) :=‘x 6∈ x’. Further , δ is the identity function. Now,
for X ⊆ Ω, it follows:

1) δ(X) = X 6∈ X [for suppose otherwise – then, X ∈ X which implies, by the the fact that every
element of X does not belong to itself, that X 6∈ X (Contradiction!)];

2) δ(X) = X ∈ Ω [from (1), because we have that X 6∈ X and that Ω is the set of elements that do not
belong to themselves].

Then, when X = Ω it follows δ(Ω) 6∈ Ω and δ(Ω) ∈ Ω – Contradiction!

Tarski’s Liar Sentence:
Let Ω := {〈x〉 | φ(x)} where φ(x) := ‘T (〈x〉)’ (that is, the formula expressed by x is true). Further, assume
δ : A 7→ α where A ⊆ Ω and α = 〈α 6∈ A〉, that is, α means ‘This sentence is not in A’. Now, for X ⊆ Ω,
and for δ(X) = x = 〈x 6∈ X〉 it follows:

1) δ(X) 6∈ X [for suppose otherwise – then
1*) δ(X) ∈ X
2*) 〈x 6∈ X〉 ∈ X (By def. of δ(x))
3*) 〈x 6∈ X〉 ∈ Ω (Since X ⊆ Ω)
4*) T (〈x 6∈ X〉) (By the construction of Ω)
5*) x 6∈ X (By the fact that 〈x 6∈ X〉 is true, from 4*)
6*) 〈x 6∈ X〉 6∈ X (By the definition of x, that is, x = 〈x 6∈ X〉)
7*) δ(X) 6∈ X (By the definition of δ(X))
8*) ⊥ (Since (7*) contradicts the assumption in (1*))];

2) By (1) we know δ(X) 6∈ X, from where it follows 〈x 6∈ X〉 6∈ X (by the definition of δ(X)). Further,
since 〈x 6∈ X〉 means that ‘This sentence is not in X’ and this is true (because it is indeed the case that it
is not in X, that is, 〈x 6∈ X〉 6∈ X), we have that 〈x 6∈ X〉 ∈ Ω. Then, δ(X) ∈ Ω.

Then, when X = Ω it follows δ(Ω) 6∈ Ω and δ(Ω) ∈ Ω – Contradiction!

The possibility of providing a common structure for both set-theoretic and semantical paradox sugests, it is
argued, that they also have a common solution – being this solution the acceptance of true contradictions
(motivating the adoption of a paraconsistent set-theory). Again, Priest:

If two paradoxes are of different kinds, it is reasonable to expect them to have different kinds
of solution; on the other hand, if two paradoxes are of the same kind, then it is reasonable to
expect them to have the same kind of solution. [. . . ] The only satisfactory uniform approach
to all these paradoxes is the dialetheic one, which takes paradoxical contradictions to be exactly
what they appear to be. 11

2

Let LP be a system for first-order logic with the usual connectives ¬, ∧, ∀ (∨ and ∃ are defined in the
usual way). We define an interpretation M as an ordered pair 〈D, I〉 where D is a non-empty domain of
quantification and I is a function which maps each individual constant, c, into D and each n-ary predicate, P ,
into a pair 〈I+(P ), I−(P )〉 (where I+(P ) is interpreted as the extension of P (the set of objects satisfying P)).
Also, we make the restriction that I+(P )∪ I−(P ) = Dn, though it is not necessary that I+(P )∩ I−(P ) = ∅.
A formula α in the language of M is assigned a truth-value v(α), from the set {{1 {0}, {1, 0}}, by the
following recursive clauses:

10Vide Russell, B. 1903, The Principles of Mathematics, Cambridge: Cambridge University Press.
11Op. Cit. Priest, 2006.
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1 ∈ v(Pc1...cn)⇔ 〈I(c1)...I(cn)〉 ∈ I+(P )
0 ∈ v(Pc1...cn)⇔ 〈I(c1)...I(cn)〉 ∈ I−(P )

1 ∈ v(¬α)⇔ 0 ∈ v(α)
0 ∈ v(¬α)⇔ 1 ∈ v(α)

1 ∈ v(α ∧ β)⇔ 1 ∈ v(α) and 1 ∈ v(β)
0 ∈ v(α ∧ β)⇔ 0 ∈ v(α) or 0 ∈ v(β)

1 ∈ v(∀α)⇔ for all d ∈ D, 1 ∈ v(α(x/d))12

0 ∈ v(∀α)⇔ for some d ∈ D, 0 ∈ v(α(x/d))

We also define semantical consequence as:
M is a LP-model for α (M |= α) iff 1 ∈ v(α)
α is an LP-semantical-consequence of σ (σ |= α) iff every model of σ is a model of α 13

Collapsed Model: Let M = 〈D, I〉 be an arbitrary interpretation. Let π be an equivalence relation defined
on D and for arbitrary d ∈ D let [d] be the equivalence class of d under π. Then, we call Mπ = 〈Dπ, Iπ〉 is
the collapsed model of M under π and we define it as follows:

• Dπ = {[d]; d ∈ D};

• for every constant c, Iπ(c) = I[c];

• for a1, ..., an ∈ Dπ:

– 〈a1, ..., an〉 ∈ I+π (P ) iff ∃x1 ∈ a1, ..., xn ∈ an, 〈x1, ..., xn〉 ∈ I+(P );

– 〈a1, ..., an〉 ∈ I−π (P ) iff ∃x1 ∈ a1, ..., xn ∈ an, 〈x1, ..., xn〉 ∈ I−(P )

Collapsing Lemma: For every formula α, in the language of M, vπ(α) ⊇ v(α).
Proof: By recursion on the complexity of α.14

• (Atomic Case): 1 ∈ v(Pc1...cn) =⇒ 〈I(c1), ..., I(cn)〉 ∈ I+(P ) =⇒ ∃x1 ∈ I[(c1)], ..., xn ∈ I[(cn)],
〈x1, ..., xn〉 ∈ I+(P ) =⇒ 〈I[(c1)], ..., I[(cn)]〉 ∈ I+π (P ) =⇒ 〈Iπ(c1), ..., Iπ(cn)〉 ∈ I+π (P ) =⇒ 1 ∈
vπ(Pc1...cn).

• (¬): 1 ∈ v(¬α) =⇒ 0 ∈ v(α) =⇒ 0 ∈ vπ(α) =⇒ 1 ∈ vπ(¬α).

• (∧): 1 ∈ v(α ∧ β) =⇒ 1 ∈ v(α) and 1 ∈ v(β) =⇒ 1 ∈ vπ(α) and 1 ∈ vπ(β) =⇒ 1 ∈ vπ(α ∧ β).

• (∀): 1 ∈ v(∀xα) =⇒ 1 ∈ v(α(x/d)) for all d ∈ D =⇒ 1 ∈ vπ(α(x/d)) for all [d] ∈ Dπ =⇒ 1 ∈ vπ(∀xα).

Toy-Model for ZF and the axioms of näıve set theory:
Using the Collapsing Lemma, we can build a model for ZF and for (Comprehension). Take M = 〈D, I〉

to be a model for ZF and let α be some ordinal in D. Now, define a to be an object in M such that a = Vα.
We can build a collapsed model Mπ by defining a partition π under D such that π:

• Puts every member of rank 6 α (in M) in its own singleton;

• Puts all objects of rank >α (including a) into a single set.

We observe that since M is a model for ZF , the collapsed model Mπ is also a model for ZF , by the
Collapsing Lemma. Now we have that, for arbitrary b ∈ D:

• (1.1) If (in M) b is of rank less than α, then b ∈ a is true in M; by the Collapsing Lemma, [b] ∈ [a]
is true in Mπ;

12Where ‘α(x/d)’ denotes α with all free occurences of ‘x’ replaced by ‘d’
13We observe that in LP A,¬A 6|= B – consider an interpretation where {1, 0} ∈ v(A) but 0 ∈ v(B) and 1 6∈ v(B).
14We will only prove the truth cases. For details,Vide Priest, G., 1991, Minimally Inconsistent LP, ”Studia Logica”, 50, pp.

321-31.
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• (1.2) If (in M) b is of rank greater or equal than α, there is some element c that is also of rank
greater or equal than α (e.g. c = {b}) such that b ∈ c. Since c is of rank greater than α, we have that
Iπ(c) = [a]. Hence, in Mπ, it is true that [b] ∈ [a];

• (2) There are elements that do not have rank less than α such that b is not a member of them (e.g.
{c}, where c is distinct from b and has rank greater than α). Since these elements have been identified
with [a] in Mπ, we have that [b] ∈ [a] is false.

From (1.1) and (1.2) we have that Mπ |= [b] ∈ [a] and from (2) we have that Mπ 6|= [b] ∈ [a]. Then, it
follows that vπ([a] ∈ [b]) = {1, 0} and that Mπ |= [b] ∈ [a] ↔ φ(x/[b]) from where we get Mπ |= ∀x(x ∈
[a] ↔ φ(x)) and, finally, Mπ |= ∃y∀x(x ∈ y ↔ φ(x)). So Mπ satisfies the axiom of Comprehension and
since it is a collapsed model built from a model for ZF, by the Collapsing Lemma, it also satisfies all the
theorems that M satisfies, including Extensionality. Hence, Mπ is a paraconsistent model for ZF and for
the näıve axioms of set theory.


