
The Theories of Classes
Report of Alternative Set Theories

Davide Emilio Quadrellaro

February 2018

1 Theories of Classes

When we work in set theories – especially when we work in ZFC – the statements
of our theory do only refer to sets and every time we speak of classes we are
actually using only abbreviations for first-order formulas. For this reason one may
be interested in class theories, namely in alternative theories in which one can
talk both about sets and classes in the “official language”.

In particular we will introduce two important class theories:

• NBG is a class theory which has been developed in the first half of the 20th
century in a series of papers by von Neumann, Bernays and Gödel. Some
interesting features of NBG are the fact that it is finitely axiomatizable and
that it can be proved to be a conservative extension of ZFC.

• MK is a class theory whose comprehension principle for classes is stronger
than that of NBG. More precisely, NBG can be proved to be a subtheory of
MK. It is also interesting to notice that MK is strong enough to prove the
consistency of NBG (and thus also of ZFC). MK was firstly presented in an
appendix to a book of topology by Kelley in 1955 an then developed by
Mostowski, Quine and Morse.

2 The Axioms of NBG

In what follows I will provide an axiomatization of NBG which closely refers to
the original axiomatization proposed by Gödel in his 1940 monograph “The con-
sistency of the Axiom of Choice and of the generalized continuum-hypothesis with
the axioms of set theory”.

The language we use to axiomatize NBG is first-order-logic with equality and
three additional predicates:

Cls(X) = “X is a class”

M(X) = “X is a set”
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X ∈ Y = “X belongs to Y ”

We then define:

Pr(X) = ¬M(X) = “X is a proper class ”

Moreover, we adopt the convention that capital letter variables (X, Y, Z, ...) refer
to classes and small letter variables (x, y, z, ...) refer to sets. Notice that for us this
is just a convention and that to be fully precise we should always make explicit if
something is a set or a proper class. For instance, every time we write something
like ∀x(Px), we should rather write ∀X(M(X)→ P (X)). Differently, if one adopts
a two-sorted language, then one can drop the uses of the predicates for sets and
classes and use different variables to distinguish among them.

Let us now present the axioms of NBG. We distinguish them in four groups
A,B,C,D.

Group A

1. ∀x(Cls(x)) [Every set is a class]

2. ∀X∀Y (X ∈ Y →M(X)) [The elements of classes are sets]

3. ∀X∀Y ∀u((u ∈ X ↔ u ∈ Y )→ X = Y ) [Extensionality]

4. ∀x∀y∃x∀u(u ∈ z ↔ u = x ∨ u = y) [Pairing]

In the axioms of the next group we assume the standard definition of ordered pairs
and ordered n-tuples.

Group B

1. ∃X∀u∀v(〈u, v〉 ∈ X ↔ u ∈ v) [Axiom of ∈ −reduction]

2. ∀X∀Y ∃Z∀u(u ∈ Z ↔ u ∈ X ∨ u ∈ Y ) [Axiom of intersection]

3. ∀X∀Z∀u(u ∈ Z ↔ u /∈ X) [Axiom of complement]

4. ∀X∃Z∀u(u ∈ Z ↔ ∃v(〈u, v〉 ∈ X)) [Axiom of domain]

5. ∀X∃Z∀u∀v(〈u, v〉 ∈ Z ↔ u ∈ X)

6. ∀X∃Z∀u∀v∀w(〈u, v, w〉 ∈ Z ↔ 〈v, w, u〉 ∈ X)

7. ∀X∃Z∀u∀v∀w(〈u, v, w〉 ∈ Z ↔ 〈u,w, v〉 ∈ X)

Let us now define the following properties:

Em(X) := ∀y¬(y ∈ X)

Fn(X) := ∀u∀v∀z(〈v, u〉 ∈ X ∧ 〈v, w〉 → u = w)

We then have the following new group of axioms:
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Group C

1. ∃x(¬Em(x) ∧ ∀y(y ∈ x→ ∃z(z ∈ x ∧ y ⊂ z)) [Axiom of infinity]

2. ∀x∃y∀u∀v(u ∈ v ∧ v ∈ x→ u ∈ x) [Axiom of union]

3. ∀x∃y∀u(u ⊆ x→ u ∈ y) [Axiom of power set]

4. ∀x∀F (Fn(F ) → ∃y∀u(u ∈ y ↔ ∃v(v ∈ x ∧ 〈u, v〉 ∈ F )) [Axiom of replace-
ment]

Group D: Axiom of Regularity

1. ∀X(¬Em(X)→ ∃u(u ∈ X ∧ Em(u ∩X))

Group E: Axiom of Choice

1. ∃F (Fn(F ) ∧ ∀x(¬Em(x)→ ∃y(y ∈ x ∧ 〈x, y〉 ∈ F ))

Differently from ZFC, one can immediately notice that the list of axioms of NBG
is finite. Indeed, the reason why ZFC is not finitely axiomatizable is that both
replacement and separation are axioms schemas and not axioms.

3 The Class Existence Theorem

Interestingly, in NBG one can prove the class comprehension scheme for a limited
class of formulas, i.e. for formulas in which only set variables are quantified.
Most specifically, this class comprehension principle is provably equivalent to the
axioms of Group B and it often replaces them in the very axiomatization of NBG
(cp. Jech). However, we decided to list the axioms of group B to make clear the
finitely axiomatizability of NBG. We now define:

Definition 3.1. We say that a formula ϕ(x1, ..., xn, Y1, ..., Ym) whose variables occur
among x1, ..., xn, Y1, ..., Ym is a predicative formula if only set variables are quanti-
fied in ϕ.

We can now state and prove the Class-Existence Theorem:

Theorem 3.1 (Class Existence Theorem). Let ϕ(x1, ..., xn, Y1, ..., Ym) be a predicat-
ive formula, then:

` ∃Z∀X1, ...,∀Xn(〈x1...xn〉 ∈ Z ↔ ϕ(x1, ..., xn, Y1, ..., Ym))

Proof. We prove this theorem by induction on the number k of connectives and
quantifiers in ϕ. First notice the following:

• We can consider formulas in which no subformula of the form Yi ∈ W occurs,
since every instance of this kind can be replaced by ∃x(x = Yi ∧ x ∈ W )

• Moreover, we can also assume that ϕ does not contain subformulas of the
form X ∈ X
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We limit ourselves to outline the general strategy of the proof. The base case for
k = o has three cases: when ϕ = xi ∈ xj, when ϕ = xj ∈ xi and when ϕ = xi ∈ Yl.
To prove the theorem it is then sufficient to apply intelligently the axioms of group
B. The induction step splits in three cases too: when ϕ = ¬ψ, when ϕ = ψ → σ and
when ϕ = ∀xψ. The proofs for these cases then follow by applying the appropriate
axioms of group B.

4 NBG is a conservative extension of ZFC

First, we define:

Definition 4.1. We say that a theory T2 is a conservative extension of a theory T1
if the language of T2 extends the language of T1 and, for every statement in the
language of T1 we have:

T1 ` ϕ⇔ T2 ` ϕ

It has been proved that NBG is a conservative extension of ZFC. Therefore we
have, for every statement ϕ about sets, that:

ZFC ` ϕ⇔ NBG ` ϕ

This result is interesting for what concerns the issue of the relative consistency
of these theories. Suppose that either ZFC or NBG is inconsistent, this means it
derives ⊥ and thus that also the other derives ⊥. So from the former theorem we
then have:

ZFC is consistent ⇔ NBG is consistent

5 MK and its Axioms

The class theory MK is axiomatized in the same language of NBG, of which it is
an extension. Indeed, the axioms of MK are the very same axioms of NBG, but we
replace the class axioms of the group B with a new axioms schema:

(?) ∃Y ∀x(x ∈ Y ↔ ϕ(x))

where ϕ is any formula of MK/NBG and Y is not free in it. We thus have as an
axiom of MK the full axiom of class comprehension, for the formula ϕ(x) does not
have to be a predicative formula as in the case of NBG. It is also worth remarking
that we need to extend in a similar way the axiom of replacement, by allowing a
function F to quantify also over classes and not over sets only. Finally, notice that
since we replaced the axiom of replacement and the axioms of group B of NBG
with axiom schemes, then MK is clearly not finitely axiomatizable.

It is easy then to show that one can prove all the axioms of the group B of
NBG from the new axiom (?). Therefore, we have that for every formula ϕ of the
language of NBG/MK:

NBG ` ϕ⇒ MK ` ϕ
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However, one can show that the converse does not hold. Indeed, as was first shown
by Mostowski, one can prove in MK that NBG is consistent, which by Gödel’s
second incompleteness theorem cannot be proved in NBG. So we have:

MK ` ϕ; NBG ` ϕ

Thus, from the two previous results, it then follows that MK is a proper extension
of NBG.
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