A *p*-adic Birch and Swinnerton-Dyer conjecture for modular abelian varieties

Steffen Müller
Universität Hamburg
joint with Jennifer Balakrishnan and William Stein

Rational points on curves: A p-adic and computational perspective Oxford University

Tuesday, September 25, 2012

Notation

- $\blacksquare f(z) = \sum_{n=1}^{\infty} a_n e^{2\pi i n z} \in S_2(\Gamma_1(N))$ newform,
- $\blacksquare K_f = \mathbb{Q}(\dots, a_n, \dots),$
- \blacksquare $A_f = J_1(N)/\mathrm{Ann}_{\mathbb{T}}(f)J_1(N)$ abelian variety $/\mathbb{Q}$ associated to f,
- $\blacksquare g = [K_f : \mathbb{Q}]$ dimension of A_f ,
- $\blacksquare G_f = \{\sigma : K_f \hookrightarrow \mathbb{C}\},\$
- $lacksquare f^{\sigma}(z) = \sum_{n=1}^{\infty} \sigma(a_n) e^{2\pi i n z} \text{ for } \sigma \in G_f$,
- lacksquare $L(A_f,s)=\prod_{\sigma\in G_f}L(f^\sigma,s)$ Hasse-Weil L-function of A_f .
- $L^*(A_f, 1)$ leading coefficient of series expansion of $L(A_f, s)$ in s = 1.

BSD conjecture

The conjecture Algorithms Evidence

Conjecture (Birch, Swinnerton-Dyer, Tate)

We have
$$r := \operatorname{rk}(A_f(\mathbb{Q})) = \operatorname{ord}_{s=1} L(A_f, s)$$
 and

$$\frac{L^*(A_f, 1)}{\Omega_{A_f}^+} = \frac{\operatorname{Reg}(A_f/\mathbb{Q}) \cdot |\operatorname{III}(A_f/\mathbb{Q})| \cdot \prod_v c_v}{|A_f(\mathbb{Q})_{\mathsf{tors}}| \cdot |A_f^{\vee}(\mathbb{Q})_{\mathsf{tors}}|}.$$

- lacksquare $\Omega_{A_f}^+$: real period $\int_{A_f(\mathbb{R})} |\eta|$, η Néron differential,
- $\operatorname{Reg}(A_f/\mathbb{Q})$: Néron-Tate regulator,
- lacksquare c_v : Tamagawa number at v, v finite prime,
- $\coprod (A_f/\mathbb{Q})$: Shafarevich-Tate group.

Shimura periods

The conjecture Algorithms Evidence

Let p > 2 be a prime such that A_f has good ordinary reduction at p.

We want to find a p-adic analogue of the BSD conjecture.

First need to construct a p-adic L-function.

Theorem. (Shimura) For all $\sigma \in G_f$ there exists $\Omega_{f^{\sigma}}^+ \in \mathbb{C}^{\times}$ such that we have

(i)
$$\frac{L(f^{\sigma},1)}{\Omega_{f^{\sigma}}^{+}} \in K_f$$
,

(ii)
$$\sigma\left(\frac{L(f,1)}{\Omega_f^+}\right) = \frac{L(f^{\sigma},1)}{\Omega_{f^{\sigma}}^+}$$
,

(iii) an analogue of (i) for twists of f by Dirichlet characters.

Modular symbols

The conjecture Algorithms Evidence

- \blacksquare Fix a Shimura period Ω_f^+ .
- Fix a prime \mathfrak{p} of K_f such that $\mathfrak{p} \mid p$.
- Let α be the unit root of $x^2 a_p x + p \in (K_f)_{\mathfrak{p}}[x]$.
- \blacksquare For $r \in \mathbb{Q}$, the plus modular symbol is

$$[r]_f^+ := -\frac{\pi i}{\Omega_f^+} \left(\int_r^{i\infty} f(z) dz + \int_{-r}^{i\infty} f(z) dz \right) \in K_f.$$

 \blacksquare Define a measure on \mathbb{Z}_p^{\times} :

$$\mu_{f,\alpha}^+(a+p^n\mathbb{Z}_p) = \frac{1}{\alpha^n} \left[\frac{a}{p^n} \right]_f^+ - \frac{1}{\alpha^{n+1}} \left[\frac{a}{p^{n-1}} \right]_f^+$$

Mazur/Swinnerton-Dyer p-adic L-function

The conjecture Algorithms Evidence

- Write $x \in \mathbb{Z}_p^{\times}$ as $\omega(x) \cdot \langle x \rangle$ where $\omega(x)^{p-1} = 1$ and $\langle x \rangle \in 1 + p\mathbb{Z}_p$.
- Define $L_p(f,s) := \int_{\mathbb{Z}_p^{\times}} \langle x \rangle^{s-1} d\mu_{f,\alpha}^+(x)$ for all $s \in \mathbb{Z}_p$.
- Fix a topological generator γ of $1 + p\mathbb{Z}_p$.
- Convert $L_p(f,s)$ into a p-adic power series $\mathcal{L}_p(f,T)$ in terms of $T = \gamma^{s-1} 1$.
- Let $\epsilon_p(f) := (1 \alpha^{-1})^2$ be the *p*-adic multiplier.

Then we have the following interpolation property (due to Mazur-Tate-Teitelbaum):

$$\mathcal{L}_p(f,0) = L_p(f,1) = \epsilon_p(f) \cdot [0]_f^+ = \epsilon_p(f) \cdot \frac{L(f,1)}{\Omega_f^+}.$$

Mazur-Tate-Teitelbaum conjecture

The conjecture Algorithms Evidence

All of this depends on the choice of $\Omega_f^+!$

If $A_f = E$ is an elliptic curve, a canonical choice is given by $\Omega_f^+ = \Omega_E^+$.

Conjecture. (Mazur-Tate-Teitelbaum) If $A_f = E$ is an elliptic curve, then we have $r := \operatorname{rk}(E/\mathbb{Q}) = \operatorname{ord}_{T=0}(\mathcal{L}_p(f,T))$ and

$$\frac{\mathcal{L}_p^*(f,0)}{\epsilon_p(f)} = \frac{\operatorname{Reg}_{\gamma}(E/\mathbb{Q}) \cdot |\operatorname{III}(E/\mathbb{Q})| \cdot \prod_v c_v}{|E(\mathbb{Q})_{\mathsf{tors}}|^2}.$$

- \blacksquare $\mathcal{L}_p^*(f,0)$: leading coefficient of $\mathcal{L}_p(f,T)$,
- $\blacksquare \operatorname{Reg}_{\gamma}(E/\mathbb{Q}) = \operatorname{Reg}_{p}(E/\mathbb{Q})/\log(\gamma)^{r}$, where

 $\operatorname{Reg}_p(E/\mathbb{Q})$ is the *p*-adic regulator (due to Schneider, Néron, Mazur-Tate, Coleman–Gross, Nekovář).

Extending Mazur-Tate-Teitelbaum

The conjecture Algorithms Evidence

An extension of the MTT conjecture to arbitrary dimension g > 1 should

- be equivalent to BSD in rank 0,
- \blacksquare reduce to MTT if g=1,
- be consistent with the main conjecture of Iwasawa theory for abelian varieties.

Problem. Need to construct a p-adic L-function for $A_f!$

- Idea: Define $L_p(A_f,s) := \prod_{\sigma \in G_f} L_p(f^{\sigma},s)$.
- But to pin down $L_p(f^{\sigma}, s)$, first need to fix a set $\{\Omega_{f^{\sigma}}^+\}_{\sigma \in G_f}$ of Shimura periods.

p-adic L-function associated to A_f

The conjecture Algorithms Evidence

Theorem. If $\{\Omega_{f^{\sigma}}^+\}_{\sigma \in G_f}$ are Shimura periods, then there exists $c \in \mathbb{Q}^{\times}$ such that

$$\Omega_{A_f}^+ = c \cdot \prod_{\sigma \in G_f} \Omega_{f^\sigma}^+.$$

■ So we can fix Shimura periods $\{\Omega_{f^{\sigma}}^+\}_{\sigma \in G_f}$ such that

$$\Omega_{A_f}^+ = \prod_{\sigma \in G_f} \Omega_{f^\sigma}^+. \tag{1}$$

- lacksquare With this choice, define $L_p(A_f,s):=\prod_{\sigma\in G_f}L_p(f^\sigma,s)$.
- Then $L_p(A_f, s)$ does not depend on the choice of Shimura periods, as long as (1) holds.

Interpolation

- Convert $L_p(A_f, s)$ into a p-adic power series $\mathcal{L}_p(A_f, T)$ in terms of $T = \gamma^{s-1} 1$.
- Let $\epsilon_p(A_f) := \prod_{\sigma} \epsilon_p(f^{\sigma})$ be the p-adic multiplier.
- Then we have the following interpolation property

$$\mathcal{L}_p(A_f, 0) = \epsilon_p(A_f) \cdot \frac{L(A_f, 1)}{\Omega_{A_f}^+}.$$

More notation

- \blacksquare $\mathcal{L}_p^*(A_f,0)$: leading coefficient of $\mathcal{L}_p(A_f,T)$,
- $\blacksquare \operatorname{Reg}_{\gamma}(A_f/\mathbb{Q}) = \operatorname{Reg}_{p}(A_f/\mathbb{Q})/\log(\gamma)^{r}, \text{ where}$ $r = \operatorname{rk}(A_f(\mathbb{Q})) \text{ and } \operatorname{Reg}_{p}(A_f/\mathbb{Q}) \text{ is the } p\text{-adic regulator.}$
- If A_f is not principally polarized, then $\operatorname{Reg}_p(A_f/\mathbb{Q})$ is only defined up to ± 1 .

The conjecture

The conjecture Algorithms Evidence

We make the following p-adic BSD conjecture (with the obvious sign ambiguity if A_f is not principally polarized):

Conjecture. The Mordell-Weil rank r of A_f/\mathbb{Q} equals $\mathrm{ord}_{T=0}(\mathcal{L}_p(A_f,T))$ and

$$\frac{\mathcal{L}_p^*(A_f, 0)}{\epsilon_p(A_f)} = \frac{\operatorname{Reg}_{\gamma}(A_f/\mathbb{Q}) \cdot |\operatorname{III}(A_f/\mathbb{Q})| \cdot \prod_v c_v}{|A_f(\mathbb{Q})_{\operatorname{tors}}| \cdot |A_f^{\vee}(\mathbb{Q})_{\operatorname{tors}}|}.$$

This conjecture

- is equivalent to BSD in rank 0,
- \blacksquare reduces to MTT if g=1,
- is consistent with the main conjecture of Iwasawa theory for abelian varieties, via work of Perrin-Riou and Schneider.

Computing the p-adic L-function

The conjecture Algorithms Evidence

To test our conjecture in examples, we need an algorithm to compute $\mathcal{L}_p(A_f,T)$.

- The modular symbols $[r]_{f^{\sigma}}^+$ can be computed efficiently in a purely algebraic way up to a rational factor (Cremona, Stein),
- lacksquare To compute $\mathcal{L}_p(A_f,T)$ to n digits of accuracy, can use
 - (i) approximation using Riemann sums (similar to Stein-Wuthrich) exponential in \boldsymbol{n} or
 - (ii) overconvergent modular symbols (due to Pollack-Stevens) polynomial in n.
- Both methods are now implemented in Sage.

Normalization

The conjecture Algorithms Evidence

To find the correct normalization of the modular symbols, can use the interpolation property.

- \blacksquare Find a Dirichlet character ψ associated to a quadratic number field $\mathbb{Q}(\sqrt{D})$ such that D>0 and
 - lacktriangle $L(B,1) \neq 0$, where B is A_f twisted by ψ ,
 - $lack \gcd(pN,D)=1.$
- \blacksquare We have $\Omega_B^+ \cdot \eta_\psi = D^{g/2} \cdot \Omega_{A_f}^+$ for some $\eta_\psi \in \mathbb{Q}^\times$.
- Can express $[r]_B^+ := \prod_{\sigma} [r]_{f_{\psi}^{\sigma}}^+$ in terms of modular symbols $[r]_{f^{\sigma}}^+$.
- The correct normalization factor is

$$\frac{L(B,1)}{\Omega_B^+ \cdot [0]_B^+} = \frac{\eta_\psi \cdot L(B,1)}{D^{g/2} \cdot \Omega_{A_f}^+ \cdot [0]_B^+}.$$

Coleman-Gross height pairing

The conjecture Algorithms Evidence

Suppose $A_f = \operatorname{Jac}(C)$, where C/\mathbb{Q} is a hyperelliptic curve of genus g.

The Coleman-Gross height pairing is a symmetric bilinear pairing

$$h: \mathsf{Div}^0(C) \times \mathsf{Div}^0(C) \to \mathbb{Q}_p,$$

which can be written as a sum of local height pairings

$$h = \sum_{v} h_v$$

over all finite places v of $\mathbb Q$ and satisfies $h(D,\operatorname{div}(g))=0$ for $g\in k(C)^{\times}$.

Techniques to compute h_v depend on v:

- $v \neq p$: intersection theory (M., Holmes)
- v = p: logarithms, normalized differentials, Coleman integration (Balakrishnan-Besser)

Local heights away from p

- \blacksquare $D, E \in \mathsf{Div}^0(C)$ with disjoint support,
- \blacksquare suppose $v \neq p$,
- $\blacksquare X / \operatorname{Spec}(\mathbb{Z}_v)$: regular model of C,
- \blacksquare (.)_v: intersection pairing on X,
- \mathcal{D} , $\mathcal{E} \in \mathsf{Div}(X)$: extensions of D, E to X such that $(\mathcal{D} \cdot F)_v = (\mathcal{E} \cdot F)_v = 0$ for all vertical divisors $F \in \mathsf{Div}(X)$.
- Then we have

$$h_v(D, E) = -(\mathcal{D} \cdot \mathcal{E})_v \cdot \log_p(v).$$

Computing local heights away from p

- Regular models can be computed using Magma;
- lacktriangle divisors on C and extensions to X can be represented using Mumford representation;
- intersection multiplicities of divisors on X can be computed algorithmically using linear algebra and Gröbner bases (M.) or resultants (Holmes).
- All of this is implemented in Magma.

Local heights at p

The conjecture Algorithms Evidence

Let ω_D be a normalized differential associated to D. The local height pairing at p is given by

$$h_p(D, E) = \int_E \omega_D.$$

- Suppose C/\mathbb{Q}_p is given by an odd degree model $y^2 = g(x)$.
- Let $P, Q \in C(\mathbb{Q}_p)$.
- If $P \equiv Q \pmod{p}$, then it is easy to compute $\int_P^Q \omega_D$.
- The work of Balakrishnan-Besser gives a method to extend this to the rigid analytic space $C_{\mathbb{C}_p}^{\mathrm{an}}$, using analytic continuation along Frobenius.
- Need to compute matrix of Frobenius, e.g. using Monsky-Washnitzer cohomology.
- This has been implemented by Balakrishnan in Sage.

Computing the *p*-adic regulator

The conjecture Algorithms Evidence

- Suppose $P_1, \ldots, P_r \in A_f(\mathbb{Q})$ are generators of $A_f(\mathbb{Q})$ mod torsion.
- Suppose $P_i = [D_i]$, $D_i \in Div(C)^0$ pairwise relatively prime and with pointwise \mathbb{Q}_p -rational support.
- Then $\operatorname{Reg}_p(A_f/\mathbb{Q}) = \det((m_{ij})_{i,j})$, where $m_{ij} = h(D_i, D_j)$.

Problem. Given a subgroup H of $A_f(\mathbb{Q})$ mod torsion of finite index, need to saturate it.

- Currently only possible for g=2 (g=3 work in progress due to Stoll), so in general only get $\operatorname{Reg}_p(A_f/\mathbb{Q})$ up to a \mathbb{Q} -rational square.
- For g=2, can use generators of H and compute the index using Néron-Tate regulators to get $\operatorname{Reg}_p(A_f/\mathbb{Q})$ exactly.

Empirical evidence for g = r = 2

- From "Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves" (Flynn et al. '01), we considered 16 genus 2 curves of respective level N.
- For each curve, the associated abelian variety has Mordell-Weil rank 2.

N	Equation
67	$y^2 + (x^3 + x + 1)y = x^5 - x$
73	$y^2 + (x^3 + x^2 + 1)y = -x^5 - 2x^3 + x$
85	$y^{2} + (x^{3} + x^{2} + x)y = x^{4} + x^{3} + 3x^{2} - 2x + 1$
93	$y^2 + (x^3 + x^2 + 1)y = -2x^5 + x^4 + x^3$
103	$y^2 + (x^3 + x^2 + 1)y = x^5 + x^4$
107	$y^{2} + (x^{3} + x^{2} + 1)y = x^{4} - x^{2} - x - 1$
115	$y^2 + (x^3 + x^+ 1)y = 2x^3 + x^2 + x$
125	$y^{2} + (x^{3} + x + 1)y = x^{5} + 2x^{4} + 2x^{3} + x^{2} - x - 1$
133	$y^{2} + (x^{3} + x^{2} + 1)y = -x^{5} + x^{4} - 2x^{3} + 2x^{2} - 2x$
147	$y^{2} + (x^{3} + x^{2} + x)y = x^{5} + 2x^{4} + x^{3} + x^{2} + 1$
161	$y^{2} + (x^{3} + x + 1)y = x^{3} + 4x^{2} + 4x + 1$
165	$y^{2} + (x^{3} + x^{2} + x)y = x^{5} + 2x^{4} + 3x^{3} + x^{2} - 3x$
167	$y^{2} + (x^{3} + x + 1)y = -x^{5} - x^{3} - x^{2} - 1$
177	$y^2 + (x^3 + x^2 + 1)y = x^5 + x^4 + x^3$
188	$y^2 = x^5 - x^4 + x^3 + x^2 - 2x + 1$
191	$y^2 + (x^3 + x + 1)y = -x^3 + x^2 + x$

The conjecture Algorithms Evidence

To numerically verify p-adic BSD, need to compute p-adic regulators and p-adic special values. For example, for N=188, we have:

p -adic regulator $\operatorname{Reg}_p(A_f/\mathbb{Q})$	p-adic L -value	p -adic multiplier $\epsilon_p(A_f)$
$5623044 + O(7^8)$	$1259 + O(7^4)$	$507488 + O(7^8)$
$4478725 + O(11^7)$	$150222285 + O(11^8)$	$143254320 + O(11^8)$
$775568547 + O(13^8)$	$237088204 + O(13^8)$	$523887415 + O(13^8)$
$1129909080 + O(17^8)$	$6922098082 + O(17^8)$	$4494443586 + O(17^8)$
$14409374565 + O(19^8)$	$15793371104 + O(19^8)$	$4742010391 + O(19^8)$
$31414366115 + O(23^8)$	$210465118 + O(23^8)$	$45043095109 + O(23^8)$
$2114154456754 + O(37^8)$	$1652087821140 + O(37^8)$	$1881820314237 + O(37^8)$
$6279643012659 + O(41^8)$	$2066767021277 + O(41^8)$	$4367414685819 + O(41^8)$
$9585122287133 + O(43^8)$	$3309737400961 + O(43^8)$	$85925017348 + O(43^8)$
$3328142761956 + O(53^8)$	$5143002859 + O(53^6)$	$6112104707558 + O(53^8)$
$17411023818285 + O(59^8)$	$7961878705 + O(59^6)$	$98405729721193 + O(59^8)$
$102563258757138 + O(61^8)$	$216695090848 + O(61^7)$	$137187998566490 + O(61^8)$
$26014679325501 + O(67^8)$	$7767410995 + O(67^6)$	$38320151289262 + O(67^8)$
$490864897182147 + O(71^8)$	$16754252742 + O(71^6)$	$530974572239623 + O(71^8)$
$689452389265311 + O(73^8)$	$193236387 + O(73^5)$	$162807895476311 + O(73^8)$
$878760549863821 + O(79^8)$	$1745712500 + O(79^5)$	$1063642669147985 + O(79^8)$
$2070648686579466 + O(83^8)$	$2888081539 + O(83^5)$	$1103760059074178 + O(83^8)$
$3431343284115672 + O(89^8)$	$1591745960 + O(89^5)$	$1012791564080640 + O(89^{8})$
$4259144286293285 + O(97^8)$	$21828881 + O(97^4)$	$6376229493766338 + O(97^8)$

N=188 – normalization

The conjecture Algorithms Evidence

The additional BSD invariants for N=188 are

$$|\mathrm{III}(A_f)[2]| = 1$$
, $|A_f(\mathbb{Q})_{\text{tors}}|^2 = 1$, $c_2 = 9$, $c_{47} = 1$.

We find that for the quadratic character ψ associated to $\mathbb{Q}(\sqrt{233})$, the twist B of A_f by ψ has rank 0 over \mathbb{Q} .

- Algebraic computation yields $[0]_B^+ = 144$,
- $\mathbf{I} = \eta_{\psi} = 1$, computed by comparing bases for the integral 1-forms on the curve and its twist by ψ .

$$\blacksquare \frac{\eta_{\psi} \cdot L(B,1)}{233 \cdot \Omega_{A_f}^+} = 36.$$

■ So the normalization factor for the modular symbol is 1/4.

Summary of evidence

The conjecture Algorithms Evidence

Theorem. Assume that for the Jacobians of all 16 curves listed above the Shafarevich-Tate group over $\mathbb Q$ is 2-torsion. Then our conjecture is satisfied up to least 4 digits of precision at all good ordinary p < 100 satisfying the assumptions of our algorithms.

- The assertion $\coprod (A_f/\mathbb{Q}) = \coprod (A_f/\mathbb{Q})[2]$ follows from classical BSD (Flynn et al.).
- We also have a similar result for the Jacobian of a twist of $X_0(31)$ of rank 4 over \mathbb{Q} .
- Since the twist is odd, we had to use the minus modular symbol associated to $J_0(31)$.