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Abstract. In this short note we prove a formula for local heights on elliptic curves over
number fields in terms of intersection theory on a regular model over the ring of integers.

1. Introduction

Let K be a number field and let E be an elliptic curve in Weierstraß form defined over
K. Let MK denote the set of places on K, normalized to satisfy the product formula. For
each v ∈MK we denote the completion of K at v by Kv and we let nv = [Kv : Qv] be the
local degree at v. Then there are certain functions λv : E(Kv) → R, called local heights,

such that the canonical height ĥ on E can be decomposed as

(1) ĥ(P ) =
1

[K : Q]

∑
v∈MK

nvλv(P ).

In Section 2 we discuss our normalization of the local height.
Let R be the ring of integers of K and let C be the minimal regular model of E over

Spec(R). If Q ∈ E(K), we let Q ∈ Div(C) denote the closure of (Q) ∈ Div(E)(K) and
extend this to the group Div(E)(K) of K-rational divisors on E by linearity.

For any non-archimedean v and any divisor D ∈ Div(E)(K) of degree zero, Lemma 4
guarantees the existence of a v-vertical Q-divisor Φv(D) on C such that

(2) (D + Φv(D) . F )v = 0 for any v-vertical Q-divisor F on C,

where (· . ·)v denotes the intersection multiplicity on C above v.
In Section 4 we will prove the following result, which is a local analogue of the classical

Theorem 5.

Theorem 1. Let v be a non-archimedean place of K and P ∈ E(K) \ {O}. Suppose that
E is given by a Weierstraß equation that is minimal at v. Then we have

λv(P ) = 2 (P .O)v − (Φv((P )− (O)) .P−O)v ,

where Φv((P )− (O)) is any vertical Q-divisor such that (2) holds for D = (P )− (O).
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Theorem 1 gives a finite closed formula for the local height that is independent of the
reduction type of E at v. We hope that we can generalize Theorem 1 as described in
Section 5.

The first author would like to thank the hospitality of the University of Bayreuth, where
most of the research for this paper was done. We thank the anonymous referee for spotting
several problems in the proof of Theorem 1.

2. Local heights

For each non-archimedean place v we let v : Kv −→ Z ∪ {∞} denote the surjective
discrete valuation corresponding to v and we denote the ring of integers of Kv by Ov.

If A is an abelian variety defined over K and D is an ample symmetric divisor on A, one
can define the canonical height (or Néron-Tate height) ĥD on A with respect to D. In the

case of an elliptic curve A = E in Weierstraß form we use the canonical height ĥ = ĥ2(O)

with respect to the divisor 2(O), where O is the origin of E.
For each place v of K there is a local height (or Néron function) λD,v : A(Kv) → R,

uniquely defined up to a constant, such that ĥD can be expressed as a sum of local heights
as in (1), see [4]. For an account of the different normalizations of the local height see [2,
§4]; our normalization will correspond to the one used there, so in particular we have

(3) λv(P ) = 2λSilBv (P ) +
1

6
log |∆|v

where λSilBv is the normalization of the local height with respect to D = (O) used in
Silverman’s second book [8, Chapter VI] on elliptic curves.

If v is an archimedean place, then we have a classical characterization of the local height.
It suffices to discuss the case Kv = C; here we consider the local height λ′ := λSilBv on
E(C) ∼= C/Z⊕ τZ, where Im(τ) > 0. We set q = exp(2πiτ) and denote by

B2(T ) = T 2 − T +
1

6

the second Bernoulli polynomial. If P ∈ E(C) \ {O}, then we have

λ′(P ) = −1

2
B2

(
Imz

Imτ

)
log |q| − log |1− q| −

∑
n≥1

log |(1− qnu)(1− qnu−1)|

for any complex uniformisation z of P and u = exp(2πiz). This is [8, Theorem VI.3.4] and
the following result is [8, Corollary VI.3.3]:

Proposition 2. For all P,Q ∈ E(C) such that P,Q, P ±Q 6= O we have

λ′(P +Q) + λ′(P −Q) = 2λ′(P ) + 2λ′(Q)− log |x(P )− x(Q)|+ 1

6
log |∆|.

If v is a non-archimedean place we use a Theorem due to Néron which concerns the
interplay of the local height λv and the Néron model E of E over Spec(Ov). Recall that E
can be obtained by discarding all non-smooth points from C ×Spec(Ov). Let (· . ·)v denote
the intersection multiplicity on C × Spec(Ov).
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Let Ev denote the special fiber of E above v; then Ev has components E0v , . . . Erv , where r
is a nonnegative integer and E0v is the connected component of the identity.

For a prime divisor D ∈ Div(E)(Kv) we write its closure in E as D and we extend this
operation to Div(E)(Kv) by linearity. The following proposition is a special case of [4,
Theorem 5.1]:

Proposition 3. (Néron) Let D ∈ Div(E)(Kv) and let λD,v be a local height with divisor D.
For each component E jv there is a constant γj,v(D) such that for all P ∈ E(Kv) \ supp(D)
mapping into E jv we have

λD,v(P ) = (D .P)v + γj,v(D).

3. Arithmetic intersection theory

In this section we briefly recall some basic notions of Arakelov theory on C and its
relation to canonical heights, following essentially [5].

There exists an intersection pairing

(· . ·) : Div(C)×Div(C)→ R,

called the Arakelov intersection pairing, which, for D,D′ ∈ Div(C) without common com-
ponent decomposes into

(D .D′) =
∑
v∈MK

(D .D′)v.

In the non-archimedean case (D .D′)v is the usual intersection multiplicity on C above v
(defined, for example in [5, III,§2]). If v is archimedean, let gD,v denote a Green’s function
with respect to D ×v C on the Riemann surface Ev(C) (see [5, II,§1]). Then (D .D′)v is
given by gD,v(D

′) :=
∑

i nigD,v(Qi) if D′ ×v C =
∑

i niQi. See [5, IV,§1].
Let v ∈MK be non-archimedean. We say that a divisor F on C is v-vertical if supp(F ) ⊂
Cv and we denote the subgroup of such divisors by Divv(C). We also need to use elements
of the group Q⊗Divv(C) of v-vertical Q-divisors on C.

We define the operation D → D on Div(E)(K) as in Section 2.

Lemma 4. (Hriljac) For all D ∈ Div(E)(K) of degree zero, there exists Φv(D) ∈ Q ⊗
Divv(C), unique up to rational multiples of Cv, such that we have

(D + Φv(D) . F )v = 0

for any F ∈ Q⊗Divv(C).

Proof: See for instance [5, Theorem III.3.6]. �

Note that we can pick Φv(D) = 0 if Cv has only one component. This holds for all but
finitely many v.

In analogy with a result for elliptic surfaces due to Manin (cf. [8, Theorem III.9.3]), the
following theorem relates the Arakelov intersection to the canonical height. See [5, III,§5]
for a proof.
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Theorem 5. (Faltings, Hriljac) Let D,D′ ∈ Div(E)(K) have degree zero and satisfy
[D] = [D′] = P ∈ Jac(E)(K) = E(K). For each non-archimedean v such that Cv has more
than one component choose some Φv(D) as in Lemma 4 and set Φ(D) =

∑
v Φv(D). Then

we have

(D + Φ(D) .D′) = −ĥ(P ).

4. Proof of the Main Theorem

For a non-archimedean place v we let E0(Kv) denote the subgroup of points of E(Kv)
mapping into the connected component of the identity of the special fiber Ev of the Néron
model of E over Spec(Ov). We write γj,v for the constant γj,v(2(O)) introduced in Propo-
sition 3 with respect to our local height λv. It is easy to see that our normalization
corresponds to the choice γ0,v = 0; therefore we have

(4) λv(P ) = (2O.P)v = 2(P.O)v.

for any P ∈ E0(Kv) \ {O}. Because P and O reduce to the same component, we also have
Φv((P )− (O)) = 0 which proves the theorem for such points.

Next we want to find the constants γj,v for j > 0. We will first compare the local height
with Arakelov intersections for archimedean places.

Lemma 6. Let v be an archimedean place. The local height λSilBv is a Green’s function with
respect to D = (O) and the canonical volume form on the Riemann surface Ev(C). Hence
the function

gP,v(Q) := λSilBv (Q− P )

is a Green’s function with respect to the divisor (P ) for any P ∈ Ev(C).

For a proof see [5, Theorem II.5.1]. We extend this by linearity to get a Green’s function
gD,v with respect to any D ∈ Div(Ev)(C).

Lemma 7. Let v be an archimedean place of K. For all P ∈ Ev(C) \ {O} and Q ∈
Ev(C) \ {±P,O} we have

gD,v(DQ) = −λv(P )− log |x(P )− x(Q)|v,
where D = (P )− (O) and DQ = (P +Q)− (Q).

Proof: We have

gD,v(DQ) = gP+Q,v(P )− gP+Q,v(O)− gQ,v(P ) + gQ,v(O)

= 2λ′(Q)− λ′(P +Q)− λ′(P −Q),

where λ′ = λSilBv and the second equality follows from Lemma 6. However, by Proposition
2 we have

2λ′(Q)− λ′(P +Q)− λ′(P −Q) = −2λ′(P ) + log |x(P )− x(Q)|v −
1

6
log |∆|v.

An application of (3) finishes the proof of the lemma. �
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Lemma 8. Theorem 1 holds if for each reduction type K /∈ {I0, I1, II, II∗} there is a prime
number p and an elliptic curve E(K)/Q, given by a Weierstraß equation that is minimal
at p, satisfying the following conditions:

(i) The Néron model E(K) of E(K) has reduction type K at p.
(ii) For each connected component E(K)jp, there is a point Pj ∈ E(K)(Q)\{O} reducing

to E(K)jp.
(iii) We have vp(x(P0)) ≥ 0.

Proof: Let v be a non-archimedean place of K, let kv be the residue class field at v. Let
Nv = nv

log(#kv)
, where nv = [Kv : Qv]. If P /∈ E0(Kv), we have vp(x(P )) ≥ 0 and hence

(P .O)p = 0 is immediate.
Now let K be a reduction type of E at v. Then, for any j ∈ {0, . . . , r}, both γj,v · Nv

and (Φv((Pj)− (O)) .Pj −O)v · Nv do not depend on K, E or v, but only on K and j.
For the former assertion, see [2], where the values of all possible γj,v are determined and
for the latter see [1].

Therefore it suffices to show

(5) λp(Pj) = γj,p = − (Φp((Pj)− (O)) .Pj −O)p

for all j 6= 0, where Pj ∈ E(K)(Q) is as in (ii). We can assume K /∈ {I0, I1, II, II∗}, since
for those reduction types only the connected component of the identity contains Qp-rational
points.

Let j 6= 0, let P = Pj, let D = (P ) − (O) and let DQ = (P + Q) − (Q) for each
Q ∈ E(K)(Q).

From Theorem 5 we deduce

−
∑
p

(D + Φp(D) .DQ)p − gD,∞(DQ) =
∑
p

λp(P ) + λ∞(P )

for any Q ∈ E(K)(Q) \ {P,−P,O}. For each prime p, the corresponding summand is a
rational multiple of log p, so together with the product formula (see [4, §2.1]) Lemma 7
implies

(6) λp(P ) = −(D + Φp(D) .DQ)p − log |x(P )− x(Q)|p
for all primes p, by independence of logarithms over Q.

Now consider Q = P0 ∈ E(K)0(Qp) ∩ E(K)(Q) \ {O} and expand

(D .DQ)p = (P .P+Q)p − (P .Q)p − (O .P+Q)p + (O .Q)p.

By assumption, we have
(P .Q)p = (O .P+Q)p = 0

since the respective points lie on different components. Moreover, because of the Néron
mapping property, (see [8, IV,§5]) translation by P extends to an automorphism of E(K),
so we have

(P .P+Q)p = (O .Q)p.

However, it follows from the definition of the intersection pairing in [5, III,§2] that the
latter vanishes by assumption (iii), since Q and O do not reduce to the same point modulo



6 VINCENZ BUSCH, JAN STEFFEN MÜLLER

K p E(K)

In p > 3
y2 = (x+ 1− p)(x2 − pn−1x+ pn)

n ≥ 2 P0 = (p− 1, 0); P1 = (p, p)

III
7

y2 = x3 + 7x+ 72

P0 = (−3, 1); P1 = (0, 7)

IV
7

y2 = x3 + 4 · 72

P0 = (−3, 13); P1 = (0, 14)

I∗0 7
y2 + 72y = x3 + 7x2 + 72x

P0 = (−6,−6); P1 = (0, 0); P2 = (14, 49)

I∗n, n ≥ 1 odd
2

y2 + 2ky = x · (x− (2k − 2)) · (x+ 2k+1)
n = 2k − 3 P0 = (−1, 2k+1 − 1); P1 = (0, 0)

I∗n, n ≥ 2 even
2

y2 − 2k+1y = x · (x− (2k − 2)) · (x+ 2k)
n = 2k − 2 P0 = (−1, 2k − 1); P1 = (0, 0); P2 = (−2k, 0)

IV ∗
7

y2 = x3 + 2 · 73x+ 74

P0 = (32, 239); P1 = (0, 49)

III∗
7

y2 = x3 + 73x+ 5 · 75

P0 = (−38, 127); P1 = (98, 1029)

Table 1. E(K) for K /∈ {I0, I1, II, II∗}

p. Therefore we find that (D .DQ)p = 0. Since we cannot have vp(x(P )− x(Q)) > 0, the
proof of (5) and hence of the Lemma follows from (6). �

In order to finish the proof of the Theorem, we only need to prove the following result:

Lemma 9. For each reduction type K /∈ {I0, I1, II, II∗} the elliptic curve E(K) listed in
Table 1 satisfies the conditions of Lemma 8.

Proof: This is a straightforward check using the proof of Tate’s algorithm in [8, III,§9]. If
the component group Ψ(K) of E(K) is cyclic, it suffices to list P1 ∈ E(K)(Q) mapping to
a generator of Ψ(K) to guarantee the existence of Pj as in Proposition 8 for all j 6= 0. In
the remaining case I∗n, n even, we have Ψ(K) ∼= Z/2Z ⊕ Z/2Z and hence we need to list
two points P1 and P2 mapping to generators of Ψ(K). �

Remark 10. It is well-known that λv is constant on non-identity components of Ev. This
follows from Theorem 3 as above, but we are not aware of any previous result interpreting
the constants γj,v in terms of intersection theory.

Remark 11. It is easy to see that we can consider P ∈ E(Kv) in the statement of Theorem
1. In that case, we have to look at the respective Zariski closures on C × Spec(Ov) and
observe that Lemma 4 remains correct in the local case.

Remark 12. Although Theorem 1 requires E to be given by a minimal Weierstraß equation
at v, we can find the value of λv for other models of E using the transformation formula
[2, Lemma 4].
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Remark 13. According to David Holmes, Theorem 1 can also be proved by a direct com-
parison using Néron’s original construction of the canonical height pairing. The details
will appear in Holmes’ forthcoming PhD thesis at the University of Warwick.

5. Outlook

It would be interesting to generalize Theorem 1 to the case of a Jacobian J of a curve
C of genus g ≥ 2. There are analogues of Proposition 3 in this situation and if we use
the divisor T = Θ + [−1]∗Θ, where Θ ∈ Div(J) is a theta divisor, then Theorem 5 also
generalizes. For instance, if C is hyperelliptic with a unique K-rational point∞ at infinity,
then every P ∈ J(K) can be represented using a divisor D =

∑d
i=1(Pi) − d(∞), where

d ≤ g, and a natural analogue of Theorem 1 would be an expression of λv = λT,v in terms
of the intersections (Pi,∞) and the vertical Q-divisor Φv(D).

This would be interesting, for example, because for g ≥ 3 it is currently impossible to
write down non-archimedean local heights explicitly, as one needs to work on an explicit
embedding of the Kummer variety J/{±1} into P2g−1 and these become rather complicated
as g increases. See [6, Chapter 4] for a discussion. Accordingly, the existing algorithms [3],
[7] for the computation of canonical heights use the generalization of Theorem 5 directly
by choosing (rather arbitrarily) divisors D1 and D2 that represent P . These algorithms
could be simplified significantly if a generalization of Theorem 1 were known.
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