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Introduction

• C/Q: smooth projective curve of genus g ≥ 1 with Jacobian J

• D ∈ Div(J)(Q): ample and symmetric

• hD: Weil height on J(Q̄) defined using a basis of L(D), called naive

height

The canonical height or Néron-Tate height ĥD : J(Q̄)→ R≥0 is defined by

ĥD(P ) = lim
n→∞

1

4n
hD(2nP ).

(a) ĥD is a positive definite quadratic form on J(Q̄)/torsion and J(Q̄)⊗ZR.

(b) ĥD − hD is bounded.

(c) ĥD = ĥD′ if D is linearly equivalent to D′.

(d) ĥD is the unique quadratic form in the class of Weil heights wrt. D.



Mordell-Weil group

• T : Torsion subgroup of J(Q).

• Λ := J(Q)/T ∼= Zr, where r = Rank(J(Q)).

⇒ (Λ, ĥD) is a lattice in J(Q)⊗ R.

Given a finite index subgroup of Λ, we can use the lattice structure to

find generators of J(Q) assuming we have

1. a bound on supP∈J(Q) |ĥD(P )− hD(P )|,

2. an algorithm for the computation of ĥD,

3. a method for enumerating {P ∈ J(Q) : hD(P ) ≤ B} for a given bound

B.

We will concentrate on 2 in this talk.



Some other applications

Suppose we have found generators P1, . . . , Pr of Λ and generators of T .

Assuming this, Bugeaud, Mignotte, Siksek, Stoll and Tengely have

combined a variant of the Mordell-Weil sieve with linear forms in

logarithms to provide an algorithm for the computation of all integral

points on (hyperelliptic) curves.

Let mij :=
ĥD(Pi+Pj)−ĥD(Pi)−ĥD(Pj)

2 for 1 ≤ i, j ≤ r.

The regulator R = det
(
(mij)1≤i,j≤r

)
appears in the statement of the

Birch and Swinnerton-Dyer conjecture for abelian varieties.

So we need a method to compute R in order to collect empirical evidence

for the conjecture.



Local heights

For each place v ∈MQ there are functions

λv : J(Qv) \ supp(D)→ R,

called local heights such that (among other properties)

• If P ∈ J(Q) \ supp(D), then hD(P ) =
∑
v∈MQ λv(P ).

• If P ∈ J(Q) \ supp(D), then λv(P ) = 0 for almost all v.

• If P,2P ∈ J(Qv) \ supp(D), then

λv(2P )− 4λv(P ) = − log |β(P )|v + εv(P ),

where [2]∗D = 4D+ (β) and εv : J(Qv)→ R is bounded and continuous.

Then we have

hD(2P )− 4hD(P ) =
∑

v∈MQ

εv(P ),

so εv measures locally how far away hD is from a quadratic form.



Local error functions

We fix a local height λv and define

µv(P ) =
∞∑
n=0

4−n−1εv (2nP ) .

Then we get

ĥD(P ) = hD(P ) +
∑

v∈MQ

µv(P ) if P ∈ J(Q).

There are no convergence problems, because µv(P ) = 0 holds for almost

all v ∈MQ.

From now on, we want to compute µv(P ) for all places v.

µ∞(P ) can be approximated using its series expansion if we have an upper

bound on |ε∞(P )| or using theta functions.



Néron models

• v = vp ∈MQ non-archimedean with residue characteristic p

• Cmin: minimal regular model of C over Spec(Zp) with special fiber Cmin
v

• J : Néron model of J over Spec(Zp) or Spec(Znr
p )

• J 0: connected component of the identity of the special fiber of J

• J0 = {P ∈ J(Qnr
p ) : P reduces to J 0}

• Φv = J(Qnr
p )/J0(Qnr

p ), a finite group isomorphic to the component

group of J

Assumption: The gcd of the geometric multiplicities of the components

of Cmin
v equals 1.

Lemma 1. (Raynaud)

Φv can be computed from the intersection matrix of Cmin
v .



Elliptic curves – setup

• E/Q: elliptic curve given by a Weierstrass equation with identity O,

• D = 2(O)

• κ(P ) = (x(P ) : 1) ∈ P1

We choose

• hD(P ) = h(κ(P ))

• λv(P ) = max{log |x(P )|v,0} for v ∈MQ and P ∈ E(Qv) \ {O}



Elliptic curves – non-archimedean places

Suppose v = vp ∈MQ is non-archimedean with residue characteristic p

Proposition 2. (Néron, Tate)

If E is given by a v-minimal Weierstrass model, then εv and µv factor

through the component group Φv.

Tate and Silverman used this to find formulas for µv, depending on the

reduction type of E at v.

Example.

Suppose E has multiplicative reduction at v such that Φv
∼= Z/mZ. Let

P = (x, y) ∈ E(Qp) \ E0(Qp) and let i = min{ordv(2y + a1x+ a3),m/2}.
Then we have

µv(P ) = −
i(m− i)

m
log p.



Genus 2 – setup

• C : y2 + h(x)y = f(x): genus 2 curve over Q with Jacobian J, where

h(x), f(x) ∈ Z[x] have degree at most 3,6, respectively

• K = J/{±1}: Kummer surface of J

• κ = (κ1, . . . , κ4) : J → K ↪→ P3 explicit quotient map (Flynn, M.)

• δ = (δ1, δ2, δ3, δ4), δi suitably normalized homogeneous polynomials on

K satisfying δ(κ(P )) = κ(2P ),

• D ∈ Div(J)(Q) such that L(D) = 〈κ1, . . . , κ4〉 and

P ∈ supp(D)⇔ κ1(P ) = 0.

(If we have a Weierstrass point ∞ ∈ C(Q), then D = 2Θ, where Θ is the

theta divisor on J corresponding to ∞.)

We use hD(P ) = h(κ(P )).



Genus 2 – local heights

• v ∈MQ

• P ∈ J(Qv) \ supp(D)

• x = (x1, x2, x3, x4): a set of projective coordinates for κ(P ) ∈ K
normalized by xi = κi(P )

κ1(P )

We use

λv(P ) = max{log |xi|v)}.

If P,2P /∈ supp(D), then λv(2P )− 4λv(P ) = − log |β(P )|v + εv(P ), where

• β(P ) = δ1(x)

• εv(P ) = max{log |δi(x)|v} − 4 max{log |xi|v} does not depend on the

normalization x of κ(P ).

There is an algorithm to compute ĥD due to Flynn, Smart and Stoll.

Problem: Need to compute possibly large multiples of P .



Genus 2 – non-archimedean places

Let v = vp ∈MQ be non-archimedean with residue characteristic p.

Idea: Find formulas for µv depending on the reduction type.

We say that the given model of C satisfies condition (†) if Cmin can be

constructed from the closure of C over Spec(Zp) using only blow-ups.

Proposition 3. (M.)

If condition (†) is satisfied for the given model of C, then εv and µv factor

through the component group Φv of the Néron model.

Problems.

• Not all genus 2 curves have a model satisfying condition (†).

• There are more than 100 different reduction types (Namikawa-Ueno)



Genus 2 – simplification

But: There are simple formulas describing the behavior of µv under

transformations.

Lemma 4. (Stoll)

There is an extension k/Qp of ramification degree not divisible by a prime

> 5 such that C has a model whose reduction contains no points of

multiplicity > 3 and at most one point of multiplicity 3.

We have to find formulas for µv(P ) for the possible models in Lemma 4.

• If there are no triple points, there are formulas similar to the genus 1

case.

• Otherwise, condition (†) might not be satisfied.



Genus 2 – an example

Example. Cm : y2 = (x3 + p6m+2)(x+ 1)(x− 1),m ≥ 0, p > 2

• Cm satisfies condition (†)⇔ m = 0

• #Φv = 3 for all m ≥ 0

Suppose P ∈ J0(Qp). Then we have

µv(P ) = −min{ordv(x3),ordv(x4),m} log(p),

where x = (x1, x2, x3, x4) are v-integral coordinates of κ(P ) such that

some xi is a unit.

There are similar formulas for all models allowed in Lemma 4.



Genus 3

Now suppose C is hyperelliptic and has genus 3.

Idea: Use the Kummer threefold K associated to J. We have

• an embedding of K into P7 (Stubbs)

• defining equations (1 quadric, 34 quartics) for this embedding

(Stubbs, M.)

• partial results on explicit arithmetic on K (Duquesne).

Proposition 3 continues to hold.

This is still work in progress (joint with Duquesne).



Arakelov theory approach

For other curves the local heights approach is not feasible.

Idea: Suppose Θ ∈ Div(J)(Q). Express ĥΘ+Θ− in terms of arithmetic

intersection theory on a regular model of C over Spec(Z) (Faltings,

Hriljac).

• Non-archimedean intersection numbers can be computed using

resultants (Holmes) or Gröbner bases (M.).

• Archimedean intersection numbers can be computed using theta

functions on the analytic Jacobian (Hriljac, Lang).

The algorithm is essentially complete for hyperelliptic curves and it should

be practical for general curves of small genus and moderately-sized

coefficients.


