Aufgaben zum Vorkurs Mathematik: Analytische Geometrie

Für Dienstag den 4.10.2011

Aufgabe 1:

Beweisen Sie die in der Vorlesung angegebenen Eigenschaften des euklidischen Skalarprodukts (Bilinearität, Symmetrie, positive Definitheit).

Aufgabe 2:

Finden Sie alle Lösungen der folgenden Gleichungssysteme:

(d) Zu einem Gleichungssystem bilden wir zu jeder Variable einen Vektor, indem wir die in dem Gleichungssystem auftauchenden Koeffizienten der Variablen in einen Vektor

schreiben. Im Fall a) erhalten wir also
$$v_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$, $v_3 = \begin{pmatrix} -6 \\ 3 \\ 8 \end{pmatrix}$.

Untersuchen Sie für die Gleichungssysteme (a), (b) und (c) jeweils die so gebildeten Vektoren auf lineare Unabhängigkeit.

Aufgabe 3:

Finden Sie alle Lösungen des folgenden Gleichungssystems:

Aufgabe 4:

- (a) Konstruieren Sie eine Gerade, die durch die Punkte $\begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$ und $\begin{pmatrix} 2 \\ 7 \\ 8 \end{pmatrix}$ geht
- (b) Konstruieren Sie eine zur x_1 -Achse parallele Gerade durch $\begin{pmatrix} 7 \\ -2 \\ 3 \end{pmatrix}$.

Universität Hamburg · Tor zur Welt der Wissenschaft

Aufgabe 5:

- (a) Zeigen Sie, dass zwei Geraden $G: p + \lambda v$ und $H: q + \mu w$ im Raum \mathbb{R}^3 genau dann parallel oder identisch sind, wenn v und w linear abhängig sind.
- (b) Seien u, v, w Vektoren im \mathbb{R}^3 und sei E die von v und w aufgespannte Ebene durch den Ursprung. Zeigen Sie, dass u, v und w genau dann linear abhängig sind, wenn u in E liegt.

Aufgabe 6:

- (a) Wo schneidet $g: \begin{pmatrix} 2 \\ 7 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ die x_2 - x_3 -Ebene?
- **(b)** Wo schneidet $h: \begin{pmatrix} 2 \\ 0 \\ 8 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}$ die x_1 - x_2 -Ebene?

Aufgabe 7:

Sei E die durch $E: p + \lambda_1 v + \lambda_2 w$ gegebene Ebene, wobei $p = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}, \quad v = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ und

$$w = \begin{pmatrix} -3 \\ 2 \\ 4 \end{pmatrix}$$
 gelten.

- (a) Liegen die Punkte $\begin{pmatrix} 2 \\ -13 \\ 10 \end{pmatrix}$ bzw. $\begin{pmatrix} 6 \\ 5 \\ 2 \end{pmatrix}$ in der Ebene?
- (b) Finden Sie ein x_1 , sodass $\begin{pmatrix} x_1 \\ -5 \\ -9 \end{pmatrix}$ in der Ebene liegt.
- (c) Bestimmen Sie eine Koordinatendarstellung von ${\cal E}.$
- (d) Lösen Sie a) und b) mittels Koordinatendarstellung.

Aufgabe 8:

Finden Sie eine möglichst einfache Formel für den Schnittwinkel γ einer Geraden G mit Richtungsvektor v und einer Ebene E mit Normalenvektor n.

2

Aufgabe 9:

Was haben G und H für eine Lage zueinander?

(a)
$$G: \begin{pmatrix} 1\\4\\2 \end{pmatrix} + \lambda \begin{pmatrix} -1\\2\\1 \end{pmatrix}, \quad H: \begin{pmatrix} -4\\8\\1 \end{pmatrix} + \mu \begin{pmatrix} 1\\0\\1 \end{pmatrix},$$

(b)
$$G: \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix}, \quad H: \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} -8 \\ 4 \\ -6 \end{pmatrix},$$

(c)
$$G: \begin{pmatrix} 0 \\ 3 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 6 \end{pmatrix}, \quad H: \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 3 \\ 7 \end{pmatrix},$$

(d)
$$g: \begin{pmatrix} 5 \\ -1 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} -4 \\ -6 \\ 2 \end{pmatrix}, \quad h: \begin{pmatrix} 12 \\ -1 \\ 4 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}.$$

Aufgabe 10:

Finden Sie die Ebene, die parallel zur Ebene $5x_1 - 3x_2 + x_3 = 7$ ist und durch $\begin{pmatrix} 6 \\ 7 \\ -5 \end{pmatrix}$ geht.