1. Give the dual of the following system.

$$\max c_0 x_0 + c_1 x_1$$
$$x_0 \ge \underline{0}$$
$$A x_0 + B x_1 = b_0$$
$$C x_0 + D x_1 \le b_1$$

- 2. Show that in a bipartite graph without isolated vertices the maximal number of independent vertices equals to the minimal number of edges covering all the vertices.
- **3.** Derive Hall's Theorem (there is no matching covering S in the bipartite graph G = (S, T, E) iff for some $X \subseteq S$ there is less than |X| vertices in T adjacent with a vertex in X) with polyhedral tools.
- 4. Let D = (V, A) be a digraph with $s \neq t \in V$. Suppose that s has no ingoing and t has no outgoing edges. An $s \to t$ flow is an $x : A \to \mathbb{R}^+$ such that $\varrho_x(v) = \delta_x(v)$ (here $\varrho_x(v)$ is the sum of the values of x on the ingoing edges of v and $\delta_x(v)$ is the same for outgoing edges) for $v \in V \setminus \{s, t\}$. The **amount** of the flow is $\delta_x(s)$. Show that $\delta_x(s) = \delta_x(S) - \varrho_x(S)$ whenever $s \in S \subseteq V - t$.

Let a capacity $g : A \to \mathbb{R}^+$ be given. The flow x is called **feasible** if $x \leq g$. Write a linear program about finding a feasible flow of maximal amount and show that the value of the optimum is the following:

$$\min\{\varrho_g(U) : U \subseteq V, t \in U, s \notin U\} =: \lambda_g(s, t).$$

- 5. Let D = (V, A) be a digraph. A $\Delta \in \mathbb{R}^A$ is a **tension** if there is some $\pi \in \mathbb{R}^V$ for which $\Delta(uv) = \pi(v) \pi(u)$ for $uv \in A$. Check that tensions form a linear subspace of \mathbb{R}^A and characterise the orthogonal complement of this subspace.
- 6. Let D = (V, A) be a digraph and let Q be the incidence matrix of it. Prove that the underlying undirected graph is a forest iff the columns of Q are linearly independent.
- 7. Let \mathcal{H} be a laminar hypergraph (i.e. two hyperedges are either disjoint or one of them is a subset of the other). Show that the incidence matrix of \mathcal{H} is TU.