- **1.** Give a sequence (P_n) of nonempty polyhedra such that $P_n \subseteq \mathbb{R}^n \setminus \{\underline{0}\}$ and it has no proper face.
- **2.** Give a sequence (P_n) of polyhedra such that P_n has at least 2^n vertices but at most O(n) maximal proper faces.
- **3.** Let Q be a regular TU matrix and let b be integer-valued. Show that the unique solution of Qx = b is integer-valued. (Hint: use Cramer's rule).
- 4. The vertices u, v of P are **neighbours** if the inner points of the segment [u, v] have rank 1. Characterise this relation between u and v using $Q_u^=$ and $Q_v^=$.
- 5.* Let D = (V, A) be a digraph and let $R_i \subseteq V$ be nonempty for i = 1, ..., k. Assume that for every $v \in V$ there is a system $\{P_i^v : 1 \leq i \leq k\}$ of edge-disjoint paths such that P_i^v goes from R_i to v. Show that one can colour the edges with the indices 1, ..., k such that for every i all vertices are reachable from R_i using only edges of colour i. Hints:
 - 1. Check that the condition is equivalent with the following: every nonempty $X \subseteq V$ has at least as many ingoing edges as many R_i are disjoint from it.
 - 2. It is enough to show that if $R_i \neq V$ for some *i*, then there is an outgoing edge *e* of R_i such that if we delete *e* and extend R_i with head(*e*), then the condition remains true for the resulting system.
 - 3. Prove that $e \in \text{out}(R_i)$ is a "bad" choice iff it enters a set X such that $X \cap R_i \neq \emptyset$ and X has as many ingoing edges as many R_i are disjoint from it (*i*-dangerous set).
 - 4. If X, Y are *i*-dangerous then so does $X \cap Y$ unless it is empty.
 - 5. Show that a \subseteq -minimal *i*-dangerous set Z spans an outgoing edge of R_i .
- 5. A digraph D = (V + r, A) is rooted k-edge-connected from r if every nonempty vertex set $X \not\supseteq r$ has at least k ingoing edges. Prove that rooted k-edge-connectedness is equivalent with having k many pairwise edge-disjoint spanning r-arborescences.