1. Formulate

 $\max_{x} \min_{1 \le i \le n} \{ x_i : Qx \le b, x \ge \underline{0} \}$

as a linear programming problem.

- **2.** If z is in the convex hull of $x_1, \ldots, x_m \in \mathbb{R}^n$, then there are at most n+1 among the x_i with this property.
- **3.** Let G = (V, E) be a finite graph which has a perfect matching. For a perfect matching M, let $x_M : E \to \{0, 1\}$ be its characteristic vector (i.e. $x_M(e) = 1$ iff $e \in M$). Write linear inequalities that are valid for all these x_M vectors.
- 4. Let D = (V, A) be a finite digraph with $r \in V$. Suppose that every vertex is reachable from r. An $F \subseteq A$ is a spanning **r**-arborescence if it is a tree in undirected sense and every vertex in V is reachable from r in F. Let x_F be the characteristic vector of F. Write linear inequalities that are valid for all these x_F vectors.
- 5. Let \mathcal{L} be a linear subspace of \mathbb{R}^n . Show that exactly one of $\mathcal{L}, \mathcal{L}^{\perp}$ contains an $x \ge 0$ with $x_n > 0$.
- **6.** Is it true that there always exists an $x \in \mathcal{L}$ and $y \in \mathcal{L}^{\perp}$ such that x + y has only positive coordinates?
- 7. Let \mathcal{M} be the set of those polyhedra P that can be represented in the form $Ax \leq \underline{1}, x \geq \underline{0}$, where A has only non-negative components and in every column there is at least one strictly positive ($\underline{1}$ is the constant 1 vector). Let

$$f(P) = \{ y \ge \underline{0} : \forall x \in P \ yx \le 1 \}.$$

Prove that f is an \mathcal{M} -invariant involution.