- 1. Prove that if D and D' are strongly connected orientations of G = (V, E) with $\rho_D(v) = \rho_{D'}(v)$ for $v \in V$, then one can get D' from D by reversing directed cycles repeatedly.
- **2.** Let G = (V, E) be a 2-edge-connected graph and $f \in \mathbb{N}^V$. For $X \subseteq V$, let us denote the number of connected components of G X by $\sigma(X)$. Prove that there is a strongly connected orientation D of G with $\varrho_D(v) \ge f(v)$ for $v \in V$ if and only if $f(X) + \sigma(X) \le e(X)$ for every nonempty $X \subseteq V$ (where $f(X) := \sum_{v \in X} f(v)$ and e(X) is the number of edges with at least one endpoint in X). Hint:
 - 1. Show first the necessity of the condition: $f(X) + \sigma(X) \le e(X)$ for every nonempty $X \subseteq V$.
 - 2. Take an arbitrary strongly connected orientation D' of G and suppose that $\rho_{D'}(u) < f(u)$.
 - 3. Consider the set \mathcal{Y} of the \subseteq -maximal elements of $\{Y \subseteq V u : \varrho_{D'}(Y) = 1\}$. Prove that the elements of \mathcal{Y} are disjoint and there is no edge between them.
 - 4. If there is a $w \in V \setminus \bigcup \mathcal{Y}$ with $\varrho_{D'}(w) > f(w)$, then reverse a $u \to w$ path of D'.
 - 5. If there is no such a w then show that $X := V \setminus \bigcup \mathcal{Y}$ violates the condition.
- **3.** Let $V := \{v_1, \ldots, v_n\}$ and $A := \{v_i v_j : 1 \le i < j \le n\}$. What is the largest amount of the $v_1 \to v_n$ flows with respect to the capacity $g(v_i v_j) := j i$?
- **4.** Let D = (V, A) be a digraph with $s \neq t \in V$ and let $g : A \to \mathbb{R}^+$ be given. Show that the set

$$\mathcal{O} := \{ U \subseteq V : t \in U, s \notin U, \varrho_g(U) = \lambda_g(s, t) \}$$

is closed under union and intersection (where $\lambda_g(s,t)$ is the value of a minimal $s \to t$ cut).

5. Derive Hall's theorem (about matchings in bipartite graphs) from the Maxflow-Mincut theorem.