- **1.** Suppose that $Ax = \underline{0}$ where $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n \setminus \{\underline{0}\}$. Show that x is linearly independent from the rows of A.
- **2.** Is it true that $Ax = \underline{0}$ has a nowhere 0 solution if and only if every column of A is a linear combination of the other columns?
- **3.** Pick maximal number of independent rows and maximal number of independent columns in the matrix A. Prove that the corresponding submatrix is quadratic and regular.
- **4.** Let $S \subseteq \mathbb{R}^n$ be a subspace, show that for an appropriate matrix A we have $S = \{x \in \mathbb{R}^n : Ax = \underline{0}\}$.
- 5. A linear combination $\sum_{i=1}^{m} \lambda_i v_i$ is affine combination if $\sum_{i=1}^{m} \lambda_i = 1$. If $F \subseteq \mathbb{R}^n$ is nonempty and closed under affine combination, then it is called an affine subspace. Let $F \subseteq \mathbb{R}^n$ be an affine subspace.
 - Show that there is a linear subspace $S \subseteq \mathbb{R}^n$ and $q \in \mathbb{R}^n$ such that F = S + q (i.e. $\{s + q : s \in S\}$).
 - Prove that for some matrix A and vector b we have $F = \{x \in \mathbb{R}^n : Ax = b\}$.
- **6.** Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Prove the following: $\exists x \in \mathbb{R}^n : Ax = b$ iff $\exists y \in \mathbb{R}^m : yA = \underline{0}, yb \neq 0$ (here y is considered as a row-vector).
- 7. Show that if P is a nonempty polyhedron and for every $x \in P$ and $\lambda > 0$ we have $\lambda x \in P$, then P is a polyhedral cone.
- 8.* Let P be a quadratic matrix with non-negative components. Assume that in every column the sum of the components is 1. Show that there is an $x \ge 0$, such that Px = x and $\sum_{i=1}^{n} x_i = 1$.