
ORDINAL ARITHMETIC

JULIAN J. SCHLÖDER

Abstract. We define ordinal arithmetic and show laws of Left-
Monotonicity, Associativity, Distributivity, some minor related prop-
erties and the Cantor Normal Form.

1. Ordinals

Definition 1.1. A set x is called transitive iff ∀y ∈ x∀z ∈ y : z ∈ x.

Definition 1.2. A set α is called an ordinal iff α transitive and all
β ∈ α are transitive. Write α ∈ Ord.

Lemma 1.3. If α is an ordinal and β ∈ α, then β is an ordinal.

Proof. β is transitive, since it is in α. Let γ ∈ β. By transitivity of α,
γ ∈ α. Hence γ is transitive. Thus β is an ordinal. �

Definition 1.4. If a is a set, define a+ 1 = a ∪ {a}.

Remark 1.5. ∅ is an ordinal. Write 0 = ∅. If α is an ordinal, so is
α + 1.

Definition 1.6. If α and β are ordinals, say α < β iff α ∈ β.

Lemma 1.7. For all ordinals α, α < α + 1.

Proof. α ∈ {α}, so α ∈ α ∪ {α} = α + 1. �

Notation 1.8. From now on, α, β, γ, δ, ε, ζ, η denote ordinals.

Theorem 1.9. The ordinals are linearly ordered i.e.

i. ∀α : α 6< α (strictness).
ii. ∀α∀β∀γ : α < β ∧ β < γ → α < γ (transitivity).

iii. ∀α∀β : α < β ∨ β < α ∨ α = β (linearity).

Proof. “i.” follows from (Found).
“ii.” follows from transitivity of the ordinals.
“iii.”: Assume this fails. By (Found), choose a minimal α such that

some β is neither smaller, larger or equal to α. Choose the minimal
such β. Show towards a contradiction that α = β:
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Let γ ∈ α. By minimality of α, γ < β ∨ β < γ ∨ β = γ. If β = γ,
β < α . If β < γ then by “ii.” β < α . Thus γ < β, i.e. γ ∈ β. Hence
α ⊆ β.

Let γ ∈ β. By minimality of β, γ < α ∨ α < γ ∨ α = γ. If α = γ,
α < β . If α < γ then by “ii” α < β . Thus γ < α, i.e. γ ∈ α. Hence
β ⊆ α. �

Lemma 1.10. If α 6= 0 is an ordinal, 0 < α, i.e. 0 is the smallest
ordinal.

Proof. Since α 6= 0, by linearity α < 0 or 0 < α, but α < 0 would mean
α ∈ ∅ . �

Definition 1.11. An ordinal α is called a successor iff there is a β
with α = β + 1. Write α ∈ Suc.

An ordinal α 6= ∅ is called a limit if it is no successor. Write α ∈
Lim.

Remark 1.12. By definition, every ordinal is either ∅ or a successor
or a limit.

Lemma 1.13. For all ordinals α, β: If β < α+1, then β < α∨β = α,
i.e. β ≤ α.

Proof. Let β < α + 1, i.e. β ∈ α ∪ {α}. By definition of ∪, β ∈ α or
β ∈ {α}, i.e. β ∈ α ∨ β = α. �

Lemma 1.14. For all ordinals α, β: If β < α, then β + 1 ≤ α.

Proof. Suppose this fails for some α, β. Then by linearity, β + 1 > α,
hence by the previous lemma α ≤ β. Hence by transitivity β < α ≤ β,
contradicting strictness. �

Lemma 1.15. For all α, there is no β with α < β < α + 1.

Proof. Assume there are such α and β. Then, since β < α+ 1, β ≤ α,
but since α < β, by linearity α < α, contradicting strictness. �

Lemma 1.16. For all α, β, if there is no γ with α < γ < β, then
β = α + 1.

Proof. Suppose β 6= α+1. Since α < β, α+1 ≤ β, so α+1 < β. Then
α + 1 is some such γ. �

Lemma 1.17. The operation +1 : Ord→ Ord is injective.

Proof. Let α 6= β be ordinals. Wlog α < β. Then by the previous
lemmas, α + 1 ≤ β < β + 1, i.e α + 1 6= β + 1. �

Lemma 1.18. α ∈ Lim iff ∀β < α : β + 1 < α and α 6= 0.
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Proof. Let α ∈ Lim, β < α. By linearity, β + 1 < α ∨ α < β + 1 ∨ β +
1 = α. The last case is excluded by definition of limits. So suppose
α < β + 1. Then α = β ∨ α < β.

Since β < α, α = β implies α < α, contradicting strictness.
By linearity, α < β implies β < β, contradicting strictness.
Thus β + 1 < α.
Now suppose α 6= 0 and ∀β < α : β+1 < α. Assume α ∈ Suc. Then

there is β such that α = β + 1. Then β < β + 1 = α, thus β < α, i.e.
β + 1 < α. Then α = β + 1 < α, contradicting strictness. Hence α is
a limit. �

Theorem 1.19 (Ordinal Induction). Let ϕ be a property of ordinals.
Suppose the following holds:

i. ϕ(∅) (base step).
ii. ∀α : ϕ(α)→ ϕ(α + 1) (successor step).
iii. ∀α ∈ Lim : (∀β < α : ϕ(β))→ ϕ(α) (limit step).

Then ϕ(α) holds for all ordinals α.

Proof. Suppose i, ii and iii hold. Assume there is some α such that
¬ϕ(α). By (Found), take the smallest such α.

Suppose α = ∅. This contradicts i.
Suppose α ∈ Suc. Then there is β such that α = β + 1, since

β < β + 1, β < α and hence by minimality of α, ϕ(β). By ii, ϕ(α) .
Suppose α ∈ Lim. By minimality of α, all β < α satisfy ϕ(β). Thus

by iii, ϕ(α) .
Hence there can’t be any such α. �

Definition 1.20. Let ω be the (inclusion-)smallest set that contains 0
and is closed under +1, i.e. ∀x ∈ ω : x+ 1 ∈ ω.

More formally, ω =
⋂
{w | 0 ∈ w ∧ ∀v ∈ w : v + 1 ∈ w}.

Remark 1.21. ω is a set by the Axiom of Infinity.

Theorem 1.22. ω is an ordinal.

Proof. Consider ω ∩ Ord. This set contains 0 and is closed under +1,
as ordinals are closed under +1. So ω must by definition be a subset
of ω ∩Ord, i.e. ω contains only ordinals.

Hence it suffices to show that ω is transitive. Consider ω′ = {x |
x ∈ ω ∧ ∀y ∈ x : y ∈ ω}. Clearly, 0 ∈ ω′. Let x ∈ ω′ and show that
x+ 1 ∈ ω′.

By definition, x+ 1 ∈ ω. Let y ∈ x+ 1, i.e. y = x ∨ y ∈ x. If y = x,
y ∈ ω. If y ∈ x then y ∈ ω by definition of ω′. Hence x+ 1 ∈ ω′.

Thus ω′ contains 0 and is closed under +1, i.e. ω ⊆ ω′. But ω′ ⊆ ω
by defintion, hence ω = ω′, i.e. ω is transitive. �
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Theorem 1.23. ω is a limit, in particular, it is the smallest limit
ordinal.

Proof. ω 6= 0, since 0 ∈ ω. Let α < ω. Then α + 1 < ω by definition.
Assume γ < ω is a limit ordinal. Since γ 6= ∅, 0 ∈ γ. Also, as a limit,

γ is closed under +1. Hence γ contradicts the minimality of ω. �

2. Ordinal Arithmetic

Definition 2.1. Define an ordinal 1 := 0 + 1 = {∅}.

Lemma 2.2. 1 ∈ ω.

Proof. 0 ∈ ω and ω is closed under +1. �

Definition 2.3. Let α, β be ordinals. Define ordinal addition recur-
sively:

i. α + 0 = α.
ii. If β ∈ Suc, β = γ + 1, define α + β = (α + γ) + 1.
iii. If β ∈ Lim, define α + β =

⋃
γ<β(α + γ).

Remark 2.4. By this definition, the sum α + 1 of an ordinal α and
the ordinal 1 = {0} is the same as α + 1 = α ∪ {α}.

Definition 2.5. Let α, β be ordinals. Define ordinal multiplication
recursively:

i. α · 0 = 0.
ii. If β ∈ Suc, β = γ + 1, define α · β = (α · γ) + α.
iii. If β ∈ Lim, define α · β =

⋃
γ<β(α · γ).

Definition 2.6. Let α, β be ordinals. Define ordinal exponentiation
recursively:

i. α0 = 1.
ii. If β ∈ Suc, β = γ + 1, define αβ = (αγ) · α.
iii. If β ∈ Lim and α > 0, define αβ =

⋃
γ<β(αγ). If α = 0, define

αβ = 0.

Lemma 2.7. If A is a set of ordinals,
⋃
A is an ordinal.

Proof. Let A be a set of ordinals, define a =
⋃
A.

Let x ∈ y ∈ a, then there is an α ∈ A such that x ∈ y ∈ α, so x ∈ α
hence x ∈ a. Thus, a is transitive. Let z ∈ a. There is α ∈ A such
that z ∈ α, hence z is transitive.

Thus a is transitive and every element of a is transitive, i.e. a is an
ordinal. �
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Remark 2.8. By induction and this lemma, the definitions of +, · and
exponentiation above are well-defined, i.e. if α, β are ordinals, α + β,
α · β and αβ are again ordinals.

Definition 2.9. Let A be a set of ordinals. The supremum of A is
definied as: supA = min{α | ∀β ∈ A : β ≤ α}.

Lemma 2.10. Let A be a set of ordinals, then supA =
⋃
A.

Proof. Since supA is again an ordinal, it is just the set of all ordinals
smaller than it. Hence by linearity, supA = {α | ∃β ∈ A : α < β}.
Which equals

⋃
A by definition. �

Lemma 2.11. Let A be a set of ordinals. If supA is a successor, then
supA ∈ A.

Proof. Assume supA = α + 1 /∈ A, then for all β ∈ A, β < α + 1, i.e.
β ≤ α. Then supA = α < α + 1 = supA . �

Lemma 2.12. Let A be a set of ordinals, B ⊆ A such that ∀α ∈ A∃β ∈
B : α ≤ β. Then supA = supB.

Proof. Show {γ | ∀α ∈ A : γ ≥ α} = {γ | ∀β ∈ B : γ ≥ β}. Then the
minima of these sets, and hence the suprema of A and B, are equal.
Suppose γ ≥ α for all α ∈ A. Then, since B ⊆ A, γ ≥ α for all β ∈ B.
Suppose γ ≥ β for all β ∈ B. Let α ∈ A, then there is some β ∈ B
with β ≥ α, hence γ ≥ β ≥ α. Thus γ ≥ α for all α ∈ A. �

Lemma 2.13. If γ is a limit,
⋃
γ = sup γ =

⋃
α<γ α = supα<γ α = γ.

Proof. We’ve shown a more general form of the first equality, the second
and third are just a different ways of writing the same set. Assume
γ 6= supα<γ α, i.e. γ < supα<γ α or supα<γ α < γ by linearity.

In the first case, there is α < γ such that γ < α, i.e. γ < γ
contradicting strictness.

In the second case, (supα<γ α) + 1 < γ, since γ is a limit. But
then, by definition of sup, (supα<γ α) + 1 ≤ supα<γ α while supα<γ α <
(supα<γ α) + 1, again contradicting strictness. �

Lemma 2.14. For all α, 0 + α = α.

Proof. By induction on α. Since 0 + 0 = 0, the base step is trivial.
Suppose α = β + 1 and 0 + β = β. Then 0 + α = 0 + (β + 1) =

(0 + β) + 1 = β + 1 = α.
Suppose α ∈ Lim and for all β < α, 0 + β = β. Then 0 + α =⋃
β<α(0 + β) =

⋃
β<α β = α. �

Lemma 2.15. For all α, 1 · α = α · 1 = α.
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Proof. α ·1 = α · (0 + 1) = (α ·0) +α = α. Prove 1 ·α = α by induction
on α. Since 1 · 0 = 0, the base step holds.

Suppose α = β+1 and 1 ·β = β. Then 1 ·α = (1 ·β)+1 = β+1 = α.
Suppose α is a limit and for all β < α, 1 · β = β. Then 1 · α =⋃
β<α(1 · β) =

⋃
β<α β = α. �

Lemma 2.16. For all α, α1 = α.

Proof. α1 = α0+1 = α0 · α = 1 · α = α. �

Lemma 2.17. For all α, 1α = 1.

Proof. If α = 0, 1α = 1 by definition. If α = β + 1, 1β+1 = 1β · 1 = 1.
If α is a limit, 1α = supβ<α 1β = supβ<α 1 = 1. �

Lemma 2.18. Let α be an ordinal. If α > 0, 0α = 0. Otherwise
0α = 1.

Proof. 00 = 1 by definition, so let α > 0. If α = β + 1, 0α = 0β · 0 = 0.
If α is a limit, 0α = 0 by defnition. �

Theorem 2.19 (Subtraction). For all β ≤ α there is some γ ≤ α with
β + γ = α.

Proof. By induction on α. α = 0 is trivial. Suppose α = δ + 1 and
β ≤ α. If β = α, set γ = 0. So suppose β < α, i.e. β ≤ δ. Find
γ′ ≤ β with β + γ′ = δ. Set γ = γ′ + 1, then β + γ = β + (γ′ + 1) =
(β + γ′) + 1 = δ + 1 = α.

If α is a limit and β < α then for all δ < α, β ≤ δ, find γδ such
that β + γδ = δ. If δ < β, set γδ = 0. Set γ = supβ<δ<α γδ. If γ is
a successor, then there is some δ with γ = γδ. But δ + 1 < α and as
in the successor case, γδ+1 = γδ + 1 > γδ = γ, so this can’t be the
supremum.

Also, γ 6= 0, since if it were, for all β < δ < γ, β = δ, i.e. there are
no such δ. This implies β + 1 = α, but α is no successor.

So, γ is a limit. In particular for all δ < α, γδ < γ: If there were
any δ < γ with γδ = γ, then since γ 6= 0, β < δ. Then again γδ+1 =
γδ +1 > γδ = γ, contradicting that γ is the supremum. Hence, β+γ =
supε<γ(β + ε) = supγδ<γ(β + γδ) = supγδ<γ δ = supδ<α δ = α.

�

Theorem 2.20. ω is closed under +, · and exponentiation, i.e. ∀n,m ∈
ω : n+m ∈ ω ∧ n ·m ∈ ω ∧ nm ∈ ω.

Proof. By induction on m. Since ω does not contain any limits, we
may omit the limit step.
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First consider addition. If m = 0 then n + m = m ∈ ω. Suppose
m = k + 1. n+m = (n+ k) + 1. By induction n+ k ∈ ω and since ω
is closed under +1, (n+ k) + 1 ∈ ω.

Now consider multiplication. If m = 0, n · 0 = 0 ∈ ω. Suppose
m = k + 1. n ·m = (n · k) + n. By induction n · k ∈ ω and since ω is
closed under +, (n · k) + n ∈ ω.

Finally consider exponentiation. If m = 0, n0 = 1 ∈ ω. Suppose
m = k + 1. nm = nk · n. By induction, nk ∈ ω and since ω is closed
under ·, nk · n ∈ ω. �

3. Monotonicity Laws

3.1. Comparisons of Addition.

Lemma 3.1. If α and β are ordinals, and α ≤ β, then α+ 1 ≤ β + 1.

Proof. Assume α ≤ β and α + 1 > β + 1. By transitivity it suffices to
now derive a contradiction. Since β+ 1 < α+ 1, β+ 1 = α∨β+ 1 < α.

If β + 1 = α, β + 1 ≤ β, but β < β + 1 .
If β + 1 < α, by transitivity β + 1 ≤ β, but β < β + 1 . �

Lemma 3.2. If α and β are ordinals, then α ≤ α + β.

Proof. By induction on β: If β = 0, α = α + β.
If β = γ + 1 and α ≤ α+ γ, then α+ β = (α+ γ) + 1 ≥ α+ 1 ≥ α.
If β ∈ Lim and for all γ < β, α ≤ α+γ, then: α+β =

⋃
γ<β(α+γ) =

supγ<β(α + γ) ≥ supγ<β α = α. �

Lemma 3.3. If α and β are ordinals, then β ≤ α + β.

Proof. By induction on β: β = 0 is trivial, since 0 is the smallest
ordinal.

If β = γ + 1 and γ ≤ α + γ, then α + β = (α + γ) + 1 ≥ γ + 1 = β.
If β ∈ Lim and for all γ < β, γ ≤ α+γ, then: α+β =

⋃
γ<β(α+γ) =

supγ<β(α + γ) ≥ supγ<β γ = β. �

Lemma 3.4. If γ is a limit, then for all α: α + γ is a limit.

Proof. γ 6= 0, so α+ γ ≥ γ > 0, i.e. α+ γ 6= 0. So let x ∈ α+ γ. Show
that x+ 1 < α + γ.
x ∈ α + γ =

⋃
β<γ(α + β), i.e. there is β < γ such that x ∈ α + β.

By a previous lemma, x+ 1 ≤ α+ β. If x+ 1 ∈ α+ β, x+ 1 < α+ γ.
So suppose α + β = x + 1. Since γ is a limit, β + 1 < γ and by

definition α + (β + 1) = (α + β) + 1, and x + 1 ∈ (α + β) + 1, hence
x+ 1 ∈ α + γ. �

Lemma 3.5. Suppose γ is a limit, α, β are ordinals and β < γ. then
α + β < α + γ.



8 JULIAN J. SCHLÖDER

Proof. By definition, α+γ =
⋃
δ<γ(α+δ). Since γ is a limit, β+1 < γ.

Also by definition: α+β < (α+β)+1 = α+(β+1) ∈ {α+ δ | δ < γ}.
Hence α + β ∈

⋃
δ<γ α + δ. �

Lemma 3.6. Suppose α, β, γ are ordinals and β < γ. then α + β <
α + γ.

Proof. By induction over γ. γ = 0 is clear, since there is no β < 0.
And the previous lemma is the limit step. So we need to cover the
successor step. Suppose γ = δ+ 1. Then β < γ means β ≤ δ. If β = δ,
notice: α + β = α + δ < (α + δ) + 1 = α + (δ + 1) = α + γ.

If β < δ, apply induction: α+β < α+δ. Hence α+β < (α+δ)+1 =
α + (δ + 1) = α + γ. �

Theorem 3.7 (Left-Monotonicity of Ordinal Addition). Let α, β, γ be
ordinals. The following are equivalent:

i. β < γ.
ii. α + β < α + γ.

Proof. The previous lemma shows the forward direction. So assume
α + β < α + γ and not β < γ. By linearity, γ ≤ β. If γ = β,
α + γ = α + β < α + γ . If γ < β, by the forward direction, α + γ <
α + β < α + γ . �

Lemma 3.8. 1 + ω = ω.

Proof. 1 + ω is a limit by a lemma above, so ω ≤ 1 + ω (since ω is the
smallest limit). ω is a limit, so 1 +ω = supα<ω 1 +α. Since ω is closed
under +, 1 + α < ω for all α < ω, hence supα<ω ≤ ω. It follows that
1 + ω = ω. �

Remark 3.9. Right-Monotoniticy does not hold: Clearly, 0 < 1 and
we’ve seen that 0 + ω = ω and 1 + ω = ω. So 0 + ω 6< 1 + ω.

3.2. Comparisons of Multiplications.

Lemma 3.10. For all α, β: α + β = 0 iff α = β = 0.

Proof. Reverse direction is trivial. So suppose α + β = 0 and not
α = β = 0. If β = 0, then 0 = α + β = α and if β > 0, by Left-
Monotonicity 0 ≤ α + 0 < α + β = 0 . �

Lemma 3.11. If α and β 6= 0 are ordinals, then α ≤ α · β.

Proof. By induction on β. Suppose β = γ+1, then α·β = (α·γ)+α ≥ α,
by induction and the corresponding lemma on addition.

Suppose β is a limit. α·β =
⋃
γ<β(α·γ) = supγ<β(α·γ) ≥ supγ<β α =

α. �
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Lemma 3.12. If α 6= 0 and β are ordinals, then β ≤ α · β.

Proof. By induction on β. β = 0 is trivial. Suppose β = γ + 1, then:

α · β = (α · γ) + α > α · γ (since α > 0 and by Left-Monotonicity)

≥ γ (by induction).

And α · β > γ implies α · β ≥ γ + 1 = β.
Suppose β is a limit. α·β =

⋃
γ<β(α·γ) = supγ<β(α·γ) ≥ supγ<β γ =

β. �

Lemma 3.13. If γ is a limit, then for all α 6= 0: α · γ is a limit.

Proof. γ 6= 0, so α · γ ≥ γ > 0, i.e. α · γ 6= 0. So let x ∈ α · γ. Show
that x+ 1 < α · γ.
x ∈ α · γ =

⋃
β<γ(α · β), i.e. there is β < γ such that x ∈ α · β. By

a previous lemma, x+ 1 ≤ α · β. If x+ 1 ∈ α · β, x+ 1 < α · γ.
So suppose α · β = x + 1. Since γ is a limit, β + 1 < γ and by

definition α · (β + 1) = (α · β) +α, and x+ 1 ∈ (α · β) + 1 ≤ (α · β) +α
by Left-Monotonicity (since α ≥ 1). Hence x+ 1 ∈ α · γ. �

Lemma 3.14. Suppose γ is a limit, α 6= 0 and β are ordinals and
β < γ. Then α · β < α · γ.

Proof. By definition, α · γ =
⋃
δ<γ(α · δ). Since γ is a limit, β + 1 < γ.

By Left-Monotonicity: α ·β < (α ·β) +α = α · (β+ 1) ∈ {α · δ | δ < γ}.
Hence α · β ∈

⋃
δ<γ α · δ. �

Lemma 3.15. Suppose α 6= 0 and β, γ are ordinals and β < γ. Then
α · β < α · γ.

Proof. By induction over γ. γ = 0 is clear and the previous lemma
is the limit step. So we need to cover the successor step. Suppose
γ = δ+1. Then β < γ means β ≤ δ. If β = δ, apply Left-Monotonicity:
α · β = α · δ < (α · δ) + α = α · (δ + 1) = α · γ.

If β < δ, apply induction: α ·β < α ·δ. Hence (by Left-Monotonicity)
α · β < α · δ < (α · δ) + α = α · (δ + 1) = α · γ. �

Theorem 3.16 (Left-Monotonicity of Ordinal Multiplication). Let
α, β, γ be ordinals. The following are equivalent:

i. β < γ ∧ α > 0.
ii. α · β < α · γ.

Proof. The previous lemma shows the forward direction. So assume
α ·β < α ·γ and not β < γ. If α = 0, then α ·β = 0 = α ·γ . So α > 0.
By linearity, γ ≤ β. If γ = β, α · γ = α · β < α · γ . If γ < β, by the
forward direction, α · γ < α · β < α · γ . �
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Lemma 3.17. Let 2 = 1 + 1. 2 · ω = ω.

Proof. Since ω is the smallest limit and by a lemma above 2 · ω is a
limit, ω ≤ 2 · ω. Since ω is closed under ·, for all α < ω, 2 · α ∈ ω.
Hence 2 · ω = supα<ω 2 · α ≤ ω. �

Remark 3.18. Right-Monotonicity does not hold: Clearly, 1 < 2 and
since 1 · ω = ω and 2 · ω = ω, 1 · ω 6< 2 · ω.

3.3. Comparisons of Exponentation.

Lemma 3.19. If α and β 6= 0 are ordinals, then α ≤ αβ.

Proof. If α = 0 the lemma is trivial. So suppose α > 0.
By induction on β. Suppose β = γ + 1, then αβ = (αγ) · α ≥ α, by

induction and the corresponding lemma on multiplication.
Suppose β is a limit. αβ =

⋃
γ<β(αγ) = supγ<β(αγ) ≥ supγ<β α =

α. �

Lemma 3.20. If α > 1 and β are ordinals, then β ≤ αβ.

Proof. If β = 0 the lemma is trivial. So suppose β > 0.
By induction on β. Suppose β = γ + 1, then:

αβ = (αγ) · α > αγ · 1 (by Left-Monotonicity)

= αγ ≥ γ (by induction).

And αβ > γ implies αβ ≥ γ + 1 = β.
Suppose β is a limit. αβ =

⋃
γ<β(αγ) = supγ<β(αγ) ≥ supγ<β γ =

β. �

Lemma 3.21. If γ is a limit, then for all α > 1: αγ is a limit.

Proof. γ 6= 0, so αγ ≥ γ > 0, i.e. αγ 6= 0. So let x ∈ αγ. Show that
x+ 1 < αγ.
x ∈ αγ =

⋃
β<γ(α

β), i.e. there is β < γ such that x ∈ αβ. By a

previous lemma, x+ 1 ≤ αβ. If x+ 1 ∈ αβ, x+ 1 < αγ.
So suppose αβ = x+1. Since γ is a limit, β+1 < γ and by definition

αβ+1 = (αβ) · α, and x + 1 ∈ (αβ) + 1 ≤ αβ + αβ ≤ αβ · 2 ≤ αβ · α by
Left-Monotonicity (since α ≥ 2). Hence x+ 1 ∈ α · γ. �

Lemma 3.22. Suppose γ is a limit, α > 1 and β are ordinals and
β < γ. Then αβ < αγ.

Proof. By definition, αγ =
⋃
δ<γ(α

δ). Since γ is a limit, β + 1 < γ.

By Left-Monotonicity: αβ < (αβ) · α = αβ+1 ∈ {αδ | δ < γ}. Hence
αβ ∈

⋃
δ<γ α

δ. �
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Lemma 3.23. Suppose α > 1 and β, γ are ordinals and β < γ. Then
αβ < αγ.

Proof. By induction over γ. γ = 0 is clear and the previous lemma
is the limit step. So we need to cover the successor step. Suppose
γ = δ+1. Then β < γ means β ≤ δ. If β = δ, apply Left-Monotonicity:
αβ = αδ < (αδ) · α = αδ+1 = αγ.

If β < δ, apply induction: αβ < αδ. Hence (by Left-Monotonicity)
αβ < αδ < (αδ) · α = αδ+1 = αγ. �

Theorem 3.24 (Left-Monotonicity of Ordinal Exponentiation). Let
α, β, γ be ordinals and α > 0. The following are equivalent:

i. β < γ ∧ α > 1.
ii. αβ < αγ.

Proof. The previous lemma shows the forward direction. So assume
αβ < αγ and not β < γ. If α = 1, αβ = 1 = αγ .

By linearity, γ ≤ β. If γ = β, αγ = αβ < αγ . If γ < β, by the
forward direction, αγ < αβ < αγ . �

Lemma 3.25. Let 0 < n ∈ ω. nω = ω.

Proof. ω is the smallest limit and nω is a limit by a lemma above. So
ω ≤ nω. Since ω is closed under exponentiation, for all α < ω, nα ∈ ω.
Then nω = supα<ω n

α ≤ ω. �

Remark 3.26. Right-Monotonicity does not hold: Define 3 = 2 + 1 ∈
ω. Clearly, 2 < 3 and since 2ω = ω and 3ω = ω, 2ω 6< 3ω.

4. Associativity, Distributivity and Commutativity

Theorem 4.1. +, · and exponentiation are not commutative, i.e. there
are α, β, γ, δ, ε, ζ such that α + β 6= β + α, γ · δ 6= δ · γ and εζ 6= ζε.

Proof. Let α = 1, β = ω, γ = 2, δ = ω, ε = 0, ζ = 1.
1 + ω = ω as shown above. ω ∈ ω ∪ {ω} = ω + 1, so α+ β < β + α.
2 · ω = ω as shown above. By Left-Monotonicity, ω < ω + ω = ω · 2.

So γ · δ < δ · γ.
01 = 00 · 0 = 0, but 10 = 1 by definition. Hence εζ < ζε. �

Theorem 4.2 (Associativity of Ordinal Addition). Let α, β, γ be or-
dinals. Then (α + β) + γ = α + (β + γ).
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Proof. By induction on γ. γ = 0 is trivial. Suppose γ = δ + 1.

(α + β) + (δ + 1) = ((α + β) + δ) + 1 (by definition)

= (α + (β + δ)) + 1 (by induction)

= α + ((β + δ) + 1) (by definition)

= α + (β + (δ + 1)) (by definition)

= α + (β + γ).

Now suppose γ is a limit, in particular γ > 1. Then β + γ is a limit,
so α + (β + γ) and (α + β) + γ are limits.

(α + β) + γ = sup
ε<γ

((α + β) + ε) (by definition)

= sup
β+ε<β+γ

((α + β) + ε) (by Left-Monotonicity)

= sup
β+ε<β+γ

(α + (β + ε)) (by induction)

= sup
δ<β+γ

(α + δ) (see below)

= α + (β + γ) (by definition).

Recall Lemma 2.12. Write B = {α + (β + ε) | β + ε < β + γ} and
A = {α + δ | δ < β + γ}. Clearly B ⊆ A.

Let α + δ ∈ A. Let ε = min{ζ | β + ζ ≥ δ}. Obviously ε ≤ γ.
Assume ε = γ, then for each ζ < γ, β + ζ < δ. Then δ < β + γ =
supζ<γ β + ζ ≤ δ . Hence, ε < γ, i.e. β + ε < β + γ. By construction,
δ ≤ β+ ε. Thus, by Left-Monotonicity, α+ δ ≤ α+ (β+ ε) ∈ B. Thus,
the conditions of Lemma 2.12 are satisfied. �

Theorem 4.3 (Distributivity). Let α, β, γ be ordinals. Then α · (β +
γ) = α · β + α · γ.

Proof. Note that the theorem is trivial if α = 0, so suppose α > 0.
Proof by induction on γ. γ = 0 is trivial. Suppose γ = δ + 1.

α · (β + (δ + 1)) = α · ((β + δ) + 1) (by definition)

= α · (β + δ) + α (by definition)

= α · β + α · δ + α (by induction)

= α · β + α · (δ + 1) (by definition).

Suppose γ is a limit. Hence α · γ and β + γ are limits.
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α · (β + γ) = sup
δ<β+γ

α · δ (by definition)

= sup
β+ε<β+γ

(α · (β + ε)) (see below)

= sup
ε<γ

(α · (β + ε)) (by Left-Monotonicity)

= sup
ε<γ

(α · β + α · ε) (by induction)

= sup
α·ε<α·γ

(α · β + α · ε) (by Left-Monotonicity)

= sup
ζ<α·γ

(α · β + ζ) (see below)

= α · β + α · γ (by definition).

Recall Lemma 2.12. Write B = {α · (β + ε) | β + ε < β + γ}
and A = {α · δ | δ < β + γ}. Clearly B ⊆ A. Let α · δ ∈ A. Let
ε = min{η | β + η ≥ δ}. Obviously ε ≤ γ. Assume ε = γ, then for
each η < γ, β + η < δ. Then δ < β + γ = supη<γ β + η ≤ δ . Hence,
ε < γ, i.e. β + ε < β + γ. By construction, δ ≤ β + ε. Thus, by
Left-Monotonicity, α · δ ≤ α · (β + ε) ∈ B. Thus, the conditions of
Lemma 2.12 are satisfied.

Write B = {α ·β+α · ε | α · ε < α ·γ} and A = {α ·β+ ζ | ζ < α ·γ}.
Clearly B ⊆ A. Let α·β+ζ ∈ A. Let ε = min{η | α·η ≥ ζ}. Obviously
ε ≤ γ. Assume ε = γ, then for each η < γ, α · η < ζ. Then ζ < α · γ =
supη<γ α · η ≤ ζ . Hence, ε < γ, i.e. α · ε < α · γ. By construction,
ζ ≤ α · ε. Thus, by Left-Monotonicity, α · β + ζ ≤ α · β + α · ε ∈ B.
Thus, the conditions of Lemma 2.12 are satisfied. �

Theorem 4.4 (Associativity of Ordinal Multiplication). Let α, β, γ be
ordinals. Then (α · β) · γ = α · (β · γ).

Proof. Note that the theorem is trivial if β = 0. So suppose β > 0.
Proof by induction on γ. γ = 0 is trivial. Suppose γ = δ + 1.

(α · β) · (δ + 1) = ((α · β) · δ) + (α · β) (by definition)

= (α · (β · δ)) + (α · β) (by induction)

= α · ((β · δ) + β) (by Distributivity)

= α · (β · (δ + 1)) (by definition)

= α · (β · γ).
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Now suppose γ is a limit, in particular γ > 1. Then β · γ is a limit,
so α · (β · γ) and (α · β) · γ are limits.

(α · β) · γ = sup
ε<γ

((α · β) · ε) (by definition)

= sup
β·ε<β·γ

((α · β) · ε) (by Left-Monotonicity)

= sup
β·ε<β·γ

(α · (β · ε)) (by induction)

= sup
δ<β·γ

(α · δ) (see below)

= α · (β · γ) (by definition).

Recall Lemma 2.12. Write B = {α · (β · ε) | β · ε < β · γ} and
A = {α · δ | δ < β · γ}. Clearly B ⊆ A. If A = ∅, B = A.

Let α · δ ∈ A. Let ε = min{ζ | β · ζ ≥ δ}. Obviously ε ≤ γ. Assume
ε = γ, then for each ζ < γ, β ·ζ < δ. Then δ < β ·γ = supζ<γ β ·ζ ≤ δ .
Hence, ε < γ, i.e. β · ε < β · γ. By construction, δ ≤ β · ε. Thus, by
Left-Monotonicity, α · δ ≤ α · (β · ε) ∈ B. Thus, the conditions of
Lemma 2.12 are satisfied. �

Notation 4.5. As of now, we may omit bracketing ordinal addition
and multiplication.

Remark 4.6. Ordinal exponentiation is not associative, i.e. there are
α, β, γ with α(βγ) 6= (αβ)γ.

Proof. Let α = ω, β = 1, γ = ω. Then βγ = 1, i.e. α(βγ) = α1 = ω.
But αβ = ω, hence (αβ)γ = ωω. And ω < ωω by Left-Monotonicity. �

Theorem 4.7. Let α, β, γ be ordinals. Then αβ+γ = αβ · αγ.

Proof. Recall that β + γ = 0 iff β = γ = 0, so the theorem holds for
α = 0. Also note that the theorem is trivial for α = 1, so suppose
α > 1. Proof by induction on γ. γ = 0 is trivial. Suppose γ = δ + 1.

αβ+δ+1 = αβ+δ · α (by definition)

= αβ · αδ · α (by induction)

= αβ · αδ+1 (by definition).
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Suppose γ is a limit. Then αγ and αβ+γ are limits.

αβ+γ = sup
δ<β+γ

αδ (by definition)

= sup
β+ε<β+γ

αβ+ε (see below)

= sup
ε<γ

αβ+ε (by Left-Monotonicity)

= sup
ε<γ

(αβ · αε) (by induction)

= sup
αε<αγ

(αβ · αε) (by Left-Monotonicity)

= sup
ζ<αγ

(αβ · ζ) (see below)

= αβ + αγ (by definition).

Recall Lemma 2.12. Write B = {αβ+ε | β+ε < β+γ} and A = {αδ |
δ < β + γ}. Clearly B ⊆ A. Let αδ ∈ A. Let ε = min{η | β + η ≥ δ}.
Obviously ε ≤ γ. Assume ε = γ, then for each η < γ, β + η < δ. Then
δ < β + γ = supη<γ β + η ≤ δ . Hence, ε < γ, i.e. β + ε < β + γ. By

construction, δ ≤ β + ε. Thus, by Left-Monotonicity, αδ ≤ αβ+ε ∈ B.
Thus, the conditions of Lemma 2.12 are satisfied.

Write B = {αβ · αε | αε < αγ} and A = {αβ · ζ | ζ < αγ}. Clearly
B ⊆ A. Let αβ · ζ ∈ A. Let ε = min{η | αη ≥ ζ}. Obviously
ε ≤ γ. Assume ε = γ, then for each η < γ, αη < ζ. Then ζ < αγ =
supη<γ α

η ≤ ζ . Hence, ε < γ, i.e. αε < αγ. By construction, ζ ≤ αε.

Thus, by Left-Monotonicity, αβ ·ζ ≤ αβ+αε ∈ B. Thus, the conditions
of Lemma 2.12 are satisfied. �

5. The Cantor Normal Form

Lemma 5.1. If α < β and n,m ∈ ω \ {0}, ωα · n < ωβ ·m.

Proof. α + 1 ≤ β, so ωα+1 ≤ ωβ by Left-Monotonicity (of exponentia-
tion). Hence (by Left-Monotonicity of multiplication), ωα ·n < ωα ·ω =
ωα+1 ≤ ωβ ≤ ωβ ·m. �

Lemma 5.2. If α0 > α1 > . . . > αn, and m1, . . . ,mn ∈ ω, then
ωα0 >

∑
1≤i≤n ω

αi ·mi.

Proof. If any mi = 0 it may just be omitted from the sum. So suppose
all mi > 0. n = 0 and n = 1 are the trivial cases. Consider n = 2:
ωα1 · m1 + ωα2 · m2 ≤ ωα1 · m1 + ωα1 · m1 by the lemma above

and Left-Monotonicity of addition. Then again by the previous lemma
ωα1 ·m1 · 2 < ωα0 .
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Continue via induction: Suppose the lemma holds for n. Then con-
sider the sequence α1, . . . , αn. It follows that

∑
2≤i≤n+1 ω

αi ·mi < ωα1 .
By the n = 2 case, ωα0 > ωα1 ·m1 + ωα1 and by Left-Monotonicity of
addition, ωα1 ·m1 + ωα1 >

∑
1≤i≤n ω

αi ·mi. �

Theorem 5.3 (Cantor Normal Form (CNF)). For every ordinal α,
there is a unique k ∈ ω and unique tuples (m0, . . . ,mk) ∈ (ω \ {0})k,
(α0, . . . , αk) of ordinals with α0 > . . . > αk such that:

α = ωα0 ·m0 + . . .+ ωαk ·mk

Proof. Existence by induction on α: If α = 0, then k = 0. Suppose
that every β < α has a CNF. Let α̂ = sup{γ | ωγ ≤ α} and let
m̂ = sup{m ∈ ω | ωα̂ ·m ≤ α}. Note that ωα̂ ≤ α: If not, then α ∈ ωα̂.
Then there is γ, ωγ ≤ α with α ∈ γ. But since ωα+1 > ωα ≥ α,
γ < α + 1, i.e. γ ≤ α .

Also note that m̂ ∈ ω: If not, then m̂ = ω, hence: α < ωα̂+1 =
ωα̂ · ω = supn∈ω ω

α̂ · n ≤ α .
By construction, ωα̂ · m̂ ≤ α, so there is ε ≤ α with α = ωα̂ · m̂+ ε.

Show that ε < α: Suppose not, then ε ≥ α, hence ε ≥ ωα̂, so there is
ζ ≤ ε with ε = ωα̂ + ζ, i.e. α = ωα̂ · m̂+ ωα̂ + ζ. By left-distributivity,
α = ωα̂ · (m̂+ 1) + ζ ≥ ωα̂ · (m̂+ 1), contradicting the choice of m̂.

Thus, by induction, ε has a CNF
∑

i≤l ω
βi · ni. Note that β0 ≤ α̂: If

not, β0 > α̂, i.e. by the choice of α̂, ωβ0 > α, so ε ≥ ωβ0 > α .
Now state the CNF of α: If β0 < α̂ set k = l + 1, α0 = α̂, m0 = m̂

and αi = βi−1, mi = ni−1 for 1 ≤ i ≤ k. And if β0 = α̂ set k = l,
m0 = n0 + m̂, α0 = α̂ and αi = βi, mi = ni for 1 ≤ i ≤ k.

Uniqueness : Suppose not and let α be the minimal counterexample.
Let α = ωα0 ·m0 + . . .+ωαm ·mm = ωβ0 ·n0 + . . .+ωβn ·nn. Obviously
α > 0, i.e. the sums are not empty.

Show α0 = β0: Suppose not, wlog assume α0 > β0. Consider the
previous lemma. Then α ≥ ωα0 ·m0 > ωβ0 · n0 + . . .+ ωβn · nn = α .

Then show m0 = n0: Suppose not, wlog assume m0 < n0. Then,
again by the previous lemma, ωα0 >

∑
1≤i≤m ω

αi · mi. So, by Left-
Monotonicity of addition, α < ωα0 ·m0 +ωα0 , i.e. α < ωα0 · (m0 + 1) ≤
ωα0 · n0 ≤ α .

So ωα0 ·m0 = ωβ0 ·n0, so by Left-Monotonicity, ωα1 ·m1 + . . .+ωαm ·
mm = ωβ1 · n1 + . . .+ ωβn · nn. These terms are strictly smaller than α
by the previous lemma. By minimality of α, m = n, and the α’s, β’s,
m’s and n’s are equal. Thus α has a unique CNF . �


