ORDINAL ARITHMETIC

JULIAN J. SCHLÖDER

Abstract

We define ordinal arithmetic and show laws of LeftMonotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

1. Ordinals

Definition 1.1. A set x is called transitive iff $\forall y \in x \forall z \in y: z \in x$.
Definition 1.2. A set α is called an ordinal iff α transitive and all $\beta \in \alpha$ are transitive. Write $\alpha \in$ Ord.

Lemma 1.3. If α is an ordinal and $\beta \in \alpha$, then β is an ordinal.
Proof. β is transitive, since it is in α. Let $\gamma \in \beta$. By transitivity of α, $\gamma \in \alpha$. Hence γ is transitive. Thus β is an ordinal.

Definition 1.4. If a is a set, define $a+1=a \cup\{a\}$.
Remark 1.5. \emptyset is an ordinal. Write $0=\emptyset$. If α is an ordinal, so is $\alpha+1$.

Definition 1.6. If α and β are ordinals, say $\alpha<\beta$ iff $\alpha \in \beta$.
Lemma 1.7. For all ordinals $\alpha, \alpha<\alpha+1$.
Proof. $\alpha \in\{\alpha\}$, so $\alpha \in \alpha \cup\{\alpha\}=\alpha+1$.
Notation 1.8. From now on, $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta$ denote ordinals.
Theorem 1.9. The ordinals are linearly ordered i.e.
i. $\forall \alpha: \alpha \nless \alpha$ (strictness).
ii. $\forall \alpha \forall \beta \forall \gamma: \alpha<\beta \wedge \beta<\gamma \rightarrow \alpha<\gamma$ (transitivity).
iii. $\forall \alpha \forall \beta: \alpha<\beta \vee \beta<\alpha \vee \alpha=\beta$ (linearity).

Proof. "i." follows from (Found).
"ii." follows from transitivity of the ordinals.
"iii.": Assume this fails. By (Found), choose a minimal α such that some β is neither smaller, larger or equal to α. Choose the minimal such β. Show towards a contradiction that $\alpha=\beta$:

Let $\gamma \in \alpha$ ．By minimality of $\alpha, \gamma<\beta \vee \beta<\gamma \vee \beta=\gamma$ ．If $\beta=\gamma$ ， $\beta<\alpha$ ．If $\beta<\gamma$ then by＂ii．＂$\beta<\alpha$ 亿．Thus $\gamma<\beta$ ，i．e．$\gamma \in \beta$ ．Hence $\alpha \subseteq \beta$ ．

Let $\gamma \in \beta$ ．By minimality of $\beta, \gamma<\alpha \vee \alpha<\gamma \vee \alpha=\gamma$ ．If $\alpha=\gamma$ ， $\alpha<\beta$ 亿．If $\alpha<\gamma$ then by＂ii＂$\alpha<\beta$ 亿．Thus $\gamma<\alpha$ ，i．e．$\gamma \in \alpha$ ．Hence $\beta \subseteq \alpha$ ．
Lemma 1．10．If $\alpha \neq 0$ is an ordinal， $0<\alpha$ ，i．e． 0 is the smallest ordinal．

Proof．Since $\alpha \neq 0$ ，by linearity $\alpha<0$ or $0<\alpha$ ，but $\alpha<0$ would mean $\alpha \in \emptyset$ ．

Definition 1．11．An ordinal α is called a successor iff there is a β with $\alpha=\beta+1$ ．Write $\alpha \in$ Suc．

An ordinal $\alpha \neq \emptyset$ is called a limit if it is no successor．Write $\alpha \in$ Lim．

Remark 1．12．By definition，every ordinal is either \emptyset or a successor or a limit．

Lemma 1．13．For all ordinals α ，β ：If $\beta<\alpha+1$ ，then $\beta<\alpha \vee \beta=\alpha$ ， i．e．$\beta \leq \alpha$ ．
Proof．Let $\beta<\alpha+1$ ，i．e．$\beta \in \alpha \cup\{\alpha\}$ ．By definition of $\cup, \beta \in \alpha$ or $\beta \in\{\alpha\}$ ，i．e．$\beta \in \alpha \vee \beta=\alpha$ ．

Lemma 1．14．For all ordinals α ，β ：If $\beta<\alpha$ ，then $\beta+1 \leq \alpha$ ．
Proof．Suppose this fails for some α, β ．Then by linearity，$\beta+1>\alpha$ ， hence by the previous lemma $\alpha \leq \beta$ ．Hence by transitivity $\beta<\alpha \leq \beta$ ， contradicting strictness．
Lemma 1．15．For all α ，there is no β with $\alpha<\beta<\alpha+1$ ．
Proof．Assume there are such α and β ．Then，since $\beta<\alpha+1, \beta \leq \alpha$ ， but since $\alpha<\beta$ ，by linearity $\alpha<\alpha$ ，contradicting strictness．
Lemma 1．16．For all α, β ，if there is no γ with $\alpha<\gamma<\beta$ ，then $\beta=\alpha+1$ ．

Proof．Suppose $\beta \neq \alpha+1$ ．Since $\alpha<\beta, \alpha+1 \leq \beta$ ，so $\alpha+1<\beta$ ．Then $\alpha+1$ is some such γ ．
Lemma 1．17．The operation $+1:$ Ord \rightarrow Ord is injective．
Proof．Let $\alpha \neq \beta$ be ordinals．Wlog $\alpha<\beta$ ．Then by the previous lemmas，$\alpha+1 \leq \beta<\beta+1$ ，i．e $\alpha+1 \neq \beta+1$ ．
Lemma 1．18．$\alpha \in \operatorname{Lim}$ iff $\forall \beta<\alpha: \beta+1<\alpha$ and $\alpha \neq 0$ ．

Proof. Let $\alpha \in \operatorname{Lim}, \beta<\alpha$. By linearity, $\beta+1<\alpha \vee \alpha<\beta+1 \vee \beta+$ $1=\alpha$. The last case is excluded by definition of limits. So suppose $\alpha<\beta+1$. Then $\alpha=\beta \vee \alpha<\beta$.

Since $\beta<\alpha, \alpha=\beta$ implies $\alpha<\alpha$, contradicting strictness.
By linearity, $\alpha<\beta$ implies $\beta<\beta$, contradicting strictness.
Thus $\beta+1<\alpha$.
Now suppose $\alpha \neq 0$ and $\forall \beta<\alpha: \beta+1<\alpha$. Assume $\alpha \in$ Suc. Then there is β such that $\alpha=\beta+1$. Then $\beta<\beta+1=\alpha$, thus $\beta<\alpha$, i.e. $\beta+1<\alpha$. Then $\alpha=\beta+1<\alpha$, contradicting strictness. Hence α is a limit.

Theorem 1.19 (Ordinal Induction). Let φ be a property of ordinals. Suppose the following holds:
i. $\varphi(\emptyset)$ (base step).
ii. $\forall \alpha: \varphi(\alpha) \rightarrow \varphi(\alpha+1)$ (successor step).
iii. $\forall \alpha \in \operatorname{Lim}:(\forall \beta<\alpha: \varphi(\beta)) \rightarrow \varphi(\alpha)$ (limit step).

Then $\varphi(\alpha)$ holds for all ordinals α.
Proof. Suppose i, ii and iii hold. Assume there is some α such that $\neg \varphi(\alpha)$. By (Found), take the smallest such α.

Suppose $\alpha=\emptyset$. This contradicts i.
Suppose $\alpha \in$ Suc. Then there is β such that $\alpha=\beta+1$, since $\beta<\beta+1, \beta<\alpha$ and hence by minimality of $\alpha, \varphi(\beta)$. By ii, $\varphi(\alpha) \&$.

Suppose $\alpha \in \operatorname{Lim}$. By minimality of α, all $\beta<\alpha$ satisfy $\varphi(\beta)$. Thus by iii, $\varphi(\alpha)$ 々.

Hence there can't be any such α.
Definition 1.20. Let ω be the (inclusion-)smallest set that contains 0 and is closed under +1 , i.e. $\forall x \in \omega: x+1 \in \omega$.

More formally, $\omega=\bigcap\{w \mid 0 \in w \wedge \forall v \in w: v+1 \in w\}$.
Remark 1.21. ω is a set by the Axiom of Infinity.
Theorem 1.22. ω is an ordinal.
Proof. Consider $\omega \cap$ Ord. This set contains 0 and is closed under +1 , as ordinals are closed under +1 . So ω must by definition be a subset of $\omega \cap$ Ord, i.e. ω contains only ordinals.

Hence it suffices to show that ω is transitive. Consider $\omega^{\prime}=\{x \mid$ $x \in \omega \wedge \forall y \in x: y \in \omega\}$. Clearly, $0 \in \omega^{\prime}$. Let $x \in \omega^{\prime}$ and show that $x+1 \in \omega^{\prime}$.

By definition, $x+1 \in \omega$. Let $y \in x+1$, i.e. $y=x \vee y \in x$. If $y=x$, $\mathrm{y} \in \omega$. If $y \in x$ then $y \in \omega$ by definition of ω^{\prime}. Hence $x+1 \in \omega^{\prime}$.

Thus ω^{\prime} contains 0 and is closed under +1 , i.e. $\omega \subseteq \omega^{\prime}$. But $\omega^{\prime} \subseteq \omega$ by defintion, hence $\omega=\omega^{\prime}$, i.e. ω is transitive.

Theorem 1.23. ω is a limit, in particular, it is the smallest limit ordinal.

Proof. $\omega \neq 0$, since $0 \in \omega$. Let $\alpha<\omega$. Then $\alpha+1<\omega$ by definition.
Assume $\gamma<\omega$ is a limit ordinal. Since $\gamma \neq \emptyset, 0 \in \gamma$. Also, as a limit, γ is closed under +1 . Hence γ contradicts the minimality of ω.

2. Ordinal Arithmetic

Definition 2.1. Define an ordinal $1:=0+1=\{\emptyset\}$.
Lemma 2.2. $1 \in \omega$.
Proof. $0 \in \omega$ and ω is closed under +1 .
Definition 2.3. Let α, β be ordinals. Define ordinal addition recursively:
i. $\alpha+0=\alpha$.
ii. If $\beta \in$ Suc, $\beta=\gamma+1$, define $\alpha+\beta=(\alpha+\gamma)+1$.
iii. If $\beta \in \operatorname{Lim}$, define $\alpha+\beta=\bigcup_{\gamma<\beta}(\alpha+\gamma)$.

Remark 2.4. By this definition, the sum $\alpha+1$ of an ordinal α and the ordinal $1=\{0\}$ is the same as $\alpha+1=\alpha \cup\{\alpha\}$.

Definition 2.5. Let α, β be ordinals. Define ordinal multiplication recursively:
i. $\alpha \cdot 0=0$.
ii. If $\beta \in$ Suc, $\beta=\gamma+1$, define $\alpha \cdot \beta=(\alpha \cdot \gamma)+\alpha$.
iii. If $\beta \in \operatorname{Lim}$, define $\alpha \cdot \beta=\bigcup_{\gamma<\beta}(\alpha \cdot \gamma)$.

Definition 2.6. Let α, β be ordinals. Define ordinal exponentiation recursively:
i. $\alpha^{0}=1$.
ii. If $\beta \in$ Suc, $\beta=\gamma+1$, define $\alpha^{\beta}=\left(\alpha^{\gamma}\right) \cdot \alpha$.
iii. If $\beta \in \operatorname{Lim}$ and $\alpha>0$, define $\alpha^{\beta}=\bigcup_{\gamma<\beta}\left(\alpha^{\gamma}\right)$. If $\alpha=0$, define $\alpha^{\beta}=0$.

Lemma 2.7. If A is a set of ordinals, $\bigcup A$ is an ordinal.
Proof. Let A be a set of ordinals, define $a=\bigcup A$.
Let $x \in y \in a$, then there is an $\alpha \in A$ such that $x \in y \in \alpha$, so $x \in \alpha$ hence $x \in a$. Thus, a is transitive. Let $z \in a$. There is $\alpha \in A$ such that $z \in \alpha$, hence z is transitive.

Thus a is transitive and every element of a is transitive, i.e. a is an ordinal.

Remark 2.8. By induction and this lemma, the definitions of + , • and exponentiation above are well-defined, i.e. if α, β are ordinals, $\alpha+\beta$, $\alpha \cdot \beta$ and α^{β} are again ordinals.

Definition 2.9. Let A be a set of ordinals. The supremum of A is definied as: $\sup A=\min \{\alpha \mid \forall \beta \in A: \beta \leq \alpha\}$.
Lemma 2.10. Let A be a set of ordinals, then $\sup A=\bigcup A$.
Proof. Since $\sup A$ is again an ordinal, it is just the set of all ordinals smaller than it. Hence by linearity, $\sup A=\{\alpha \mid \exists \beta \in A: \alpha<\beta\}$. Which equals $\bigcup A$ by definition.
Lemma 2.11. Let A be a set of ordinals. If $\sup A$ is a successor, then $\sup A \in A$.

Proof. Assume sup $A=\alpha+1 \notin A$, then for all $\beta \in A, \beta<\alpha+1$, i.e. $\beta \leq \alpha$. Then $\sup A=\alpha<\alpha+1=\sup A$.
Lemma 2.12. Let A be a set of ordinals, $B \subseteq A$ such that $\forall \alpha \in A \exists \beta \in$ $B: \alpha \leq \beta$. Then $\sup A=\sup B$.
Proof. Show $\{\gamma \mid \forall \alpha \in A: \gamma \geq \alpha\}=\{\gamma \mid \forall \beta \in B: \gamma \geq \beta\}$. Then the minima of these sets, and hence the suprema of A and B, are equal. Suppose $\gamma \geq \alpha$ for all $\alpha \in A$. Then, since $B \subseteq A, \gamma \geq \alpha$ for all $\beta \in B$. Suppose $\gamma \geq \beta$ for all $\beta \in B$. Let $\alpha \in A$, then there is some $\beta \in B$ with $\beta \geq \alpha$, hence $\gamma \geq \beta \geq \alpha$. Thus $\gamma \geq \alpha$ for all $\alpha \in A$.
Lemma 2.13. If γ is a limit, $\bigcup \gamma=\sup \gamma=\bigcup_{\alpha<\gamma} \alpha=\sup _{\alpha<\gamma} \alpha=\gamma$.
Proof. We've shown a more general form of the first equality, the second and third are just a different ways of writing the same set. Assume $\gamma \neq \sup _{\alpha<\gamma} \alpha$, i.e. $\gamma<\sup _{\alpha<\gamma} \alpha$ or $\sup _{\alpha<\gamma} \alpha<\gamma$ by linearity.

In the first case, there is $\alpha<\gamma$ such that $\gamma<\alpha$, i.e. $\gamma<\gamma$ contradicting strictness.

In the second case, $\left(\sup _{\alpha<\gamma} \alpha\right)+1<\gamma$, since γ is a limit. But then, by definition of $\sup ,\left(\sup _{\alpha<\gamma} \alpha\right)+1 \leq \sup _{\alpha<\gamma} \alpha$ while $\sup _{\alpha<\gamma} \alpha<$ $\left(\sup _{\alpha<\gamma} \alpha\right)+1$, again contradicting strictness.
Lemma 2.14. For all $\alpha, 0+\alpha=\alpha$.
Proof. By induction on α. Since $0+0=0$, the base step is trivial.
Suppose $\alpha=\beta+1$ and $0+\beta=\beta$. Then $0+\alpha=0+(\beta+1)=$ $(0+\beta)+1=\beta+1=\alpha$.

Suppose $\alpha \in \operatorname{Lim}$ and for all $\beta<\alpha, 0+\beta=\beta$. Then $0+\alpha=$ $\bigcup_{\beta<\alpha}(0+\beta)=\bigcup_{\beta<\alpha} \beta=\alpha$.
Lemma 2.15. For all $\alpha, 1 \cdot \alpha=\alpha \cdot 1=\alpha$.

Proof. $\alpha \cdot 1=\alpha \cdot(0+1)=(\alpha \cdot 0)+\alpha=\alpha$. Prove $1 \cdot \alpha=\alpha$ by induction on α. Since $1 \cdot 0=0$, the base step holds.

Suppose $\alpha=\beta+1$ and $1 \cdot \beta=\beta$. Then $1 \cdot \alpha=(1 \cdot \beta)+1=\beta+1=\alpha$.
Suppose α is a limit and for all $\beta<\alpha, 1 \cdot \beta=\beta$. Then $1 \cdot \alpha=$ $\bigcup_{\beta<\alpha}(1 \cdot \beta)=\bigcup_{\beta<\alpha} \beta=\alpha$.

Lemma 2.16. For all $\alpha, \alpha^{1}=\alpha$.
Proof. $\alpha^{1}=\alpha^{0+1}=\alpha^{0} \cdot \alpha=1 \cdot \alpha=\alpha$.
Lemma 2.17. For all $\alpha, 1^{\alpha}=1$.
Proof. If $\alpha=0,1^{\alpha}=1$ by definition. If $\alpha=\beta+1,1^{\beta+1}=1^{\beta} \cdot 1=1$.
If α is a limit, $1^{\alpha}=\sup _{\beta<\alpha} 1^{\beta}=\sup _{\beta<\alpha} 1=1$.
Lemma 2.18. Let α be an ordinal. If $\alpha>0,0^{\alpha}=0$. Otherwise $0^{\alpha}=1$.

Proof. $0^{0}=1$ by definition, so let $\alpha>0$. If $\alpha=\beta+1,0^{\alpha}=0^{\beta} \cdot 0=0$. If α is a limit, $0^{\alpha}=0$ by defnition.

Theorem 2.19 (Subtraction). For all $\beta \leq \alpha$ there is some $\gamma \leq \alpha$ with $\beta+\gamma=\alpha$.

Proof. By induction on α. $\alpha=0$ is trivial. Suppose $\alpha=\delta+1$ and $\beta \leq \alpha$. If $\beta=\alpha$, set $\gamma=0$. So suppose $\beta<\alpha$, i.e. $\beta \leq \delta$. Find $\gamma^{\prime} \leq \beta$ with $\beta+\gamma^{\prime}=\delta$. Set $\gamma=\gamma^{\prime}+1$, then $\beta+\gamma=\beta+\left(\gamma^{\prime}+1\right)=$ $\left(\beta+\gamma^{\prime}\right)+1=\delta+1=\alpha$.

If α is a limit and $\beta<\alpha$ then for all $\delta<\alpha, \beta \leq \delta$, find γ_{δ} such that $\beta+\gamma_{\delta}=\delta$. If $\delta<\beta$, set $\gamma_{\delta}=0$. Set $\gamma=\sup _{\beta<\delta<\alpha} \gamma_{\delta}$. If γ is a successor, then there is some δ with $\gamma=\gamma_{\delta}$. But $\delta+1<\alpha$ and as in the successor case, $\gamma_{\delta+1}=\gamma_{\delta}+1>\gamma_{\delta}=\gamma$, so this can't be the supremum.

Also, $\gamma \neq 0$, since if it were, for all $\beta<\delta<\gamma, \beta=\delta$, i.e. there are no such δ. This implies $\beta+1=\alpha$, but α is no successor.

So, γ is a limit. In particular for all $\delta<\alpha, \gamma_{\delta}<\gamma$: If there were any $\delta<\gamma$ with $\gamma_{\delta}=\gamma$, then since $\gamma \neq 0, \beta<\delta$. Then again $\gamma_{\delta+1}=$ $\gamma_{\delta}+1>\gamma_{\delta}=\gamma$, contradicting that γ is the supremum. Hence, $\beta+\gamma=$ $\sup _{\varepsilon<\gamma}(\beta+\varepsilon)=\sup _{\gamma_{\delta}<\gamma}\left(\beta+\gamma_{\delta}\right)=\sup _{\gamma_{\delta}<\gamma} \delta=\sup _{\delta<\alpha} \delta=\alpha$.

Theorem 2.20. ω is closed under + , • and exponentiation, i.e. $\forall n, m \in$ $\omega: n+m \in \omega \wedge n \cdot m \in \omega \wedge n^{m} \in \omega$.

Proof. By induction on m. Since ω does not contain any limits, we may omit the limit step.

First consider addition. If $m=0$ then $n+m=m \in \omega$. Suppose $m=k+1 . n+m=(n+k)+1$. By induction $n+k \in \omega$ and since ω is closed under $+1,(n+k)+1 \in \omega$.

Now consider multiplication. If $m=0, n \cdot 0=0 \in \omega$. Suppose $m=k+1 . n \cdot m=(n \cdot k)+n$. By induction $n \cdot k \in \omega$ and since ω is closed under,$+(n \cdot k)+n \in \omega$.

Finally consider exponentiation. If $m=0, n^{0}=1 \in \omega$. Suppose $m=k+1 . n^{m}=n^{k} \cdot n$. By induction, $n^{k} \in \omega$ and since ω is closed under $\cdot, n^{k} \cdot n \in \omega$.

3. Monotonicity Laws

3.1. Comparisons of Addition.

Lemma 3.1. If α and β are ordinals, and $\alpha \leq \beta$, then $\alpha+1 \leq \beta+1$.
Proof. Assume $\alpha \leq \beta$ and $\alpha+1>\beta+1$. By transitivity it suffices to now derive a contradiction. Since $\beta+1<\alpha+1, \beta+1=\alpha \vee \beta+1<\alpha$.

If $\beta+1=\alpha, \beta+1 \leq \beta$, but $\beta<\beta+1$ 亿.
If $\beta+1<\alpha$, by transitivity $\beta+1 \leq \beta$, but $\beta<\beta+1$.
Lemma 3.2. If α and β are ordinals, then $\alpha \leq \alpha+\beta$.
Proof. By induction on β : If $\beta=0, \alpha=\alpha+\beta$.
If $\beta=\gamma+1$ and $\alpha \leq \alpha+\gamma$, then $\alpha+\beta=(\alpha+\gamma)+1 \geq \alpha+1 \geq \alpha$.
If $\beta \in \operatorname{Lim}$ and for all $\gamma<\beta, \alpha \leq \alpha+\gamma$, then: $\alpha+\beta=\bigcup_{\gamma<\beta}(\alpha+\gamma)=$ $\sup _{\gamma<\beta}(\alpha+\gamma) \geq \sup _{\gamma<\beta} \alpha=\alpha$.
Lemma 3.3. If α and β are ordinals, then $\beta \leq \alpha+\beta$.
Proof. By induction on β : $\beta=0$ is trivial, since 0 is the smallest ordinal.

If $\beta=\gamma+1$ and $\gamma \leq \alpha+\gamma$, then $\alpha+\beta=(\alpha+\gamma)+1 \geq \gamma+1=\beta$.
If $\beta \in \operatorname{Lim}$ and for all $\gamma<\beta, \gamma \leq \alpha+\gamma$, then: $\alpha+\beta=\bigcup_{\gamma<\beta}(\alpha+\gamma)=$ $\sup _{\gamma<\beta}(\alpha+\gamma) \geq \sup _{\gamma<\beta} \gamma=\beta$.
Lemma 3.4. If γ is a limit, then for all $\alpha: \alpha+\gamma$ is a limit.
Proof. $\gamma \neq 0$, so $\alpha+\gamma \geq \gamma>0$, i.e. $\alpha+\gamma \neq 0$. So let $x \in \alpha+\gamma$. Show that $x+1<\alpha+\gamma$.
$x \in \alpha+\gamma=\bigcup_{\beta<\gamma}(\alpha+\beta)$, i.e. there is $\beta<\gamma$ such that $x \in \alpha+\beta$. By a previous lemma, $x+1 \leq \alpha+\beta$. If $x+1 \in \alpha+\beta, x+1<\alpha+\gamma$.

So suppose $\alpha+\beta=x+1$. Since γ is a limit, $\beta+1<\gamma$ and by definition $\alpha+(\beta+1)=(\alpha+\beta)+1$, and $x+1 \in(\alpha+\beta)+1$, hence $x+1 \in \alpha+\gamma$.
Lemma 3.5. Suppose γ is a limit, α, β are ordinals and $\beta<\gamma$. then $\alpha+\beta<\alpha+\gamma$.

Proof. By definition, $\alpha+\gamma=\bigcup_{\delta<\gamma}(\alpha+\delta)$. Since γ is a limit, $\beta+1<\gamma$. Also by definition: $\alpha+\beta<(\alpha+\beta)+1=\alpha+(\beta+1) \in\{\alpha+\delta \mid \delta<\gamma\}$. Hence $\alpha+\beta \in \bigcup_{\delta<\gamma} \alpha+\delta$.
Lemma 3.6. Suppose α, β, γ are ordinals and $\beta<\gamma$. then $\alpha+\beta<$ $\alpha+\gamma$.
Proof. By induction over $\gamma . \gamma=0$ is clear, since there is no $\beta<0$. And the previous lemma is the limit step. So we need to cover the successor step. Suppose $\gamma=\delta+1$. Then $\beta<\gamma$ means $\beta \leq \delta$. If $\beta=\delta$, notice: $\alpha+\beta=\alpha+\delta<(\alpha+\delta)+1=\alpha+(\delta+1)=\alpha+\gamma$.

If $\beta<\delta$, apply induction: $\alpha+\beta<\alpha+\delta$. Hence $\alpha+\beta<(\alpha+\delta)+1=$ $\alpha+(\delta+1)=\alpha+\gamma$.
Theorem 3.7 (Left-Monotonicity of Ordinal Addition). Let α, β, γ be ordinals. The following are equivalent:
i. $\beta<\gamma$.
ii. $\alpha+\beta<\alpha+\gamma$.

Proof. The previous lemma shows the forward direction. So assume $\alpha+\beta<\alpha+\gamma$ and not $\beta<\gamma$. By linearity, $\gamma \leq \beta$. If $\gamma=\beta$, $\alpha+\gamma=\alpha+\beta<\alpha+\gamma 久$. If $\gamma<\beta$, by the forward direction, $\alpha+\gamma<$ $\alpha+\beta<\alpha+\gamma$.
Lemma 3.8. $1+\omega=\omega$.
Proof. $1+\omega$ is a limit by a lemma above, so $\omega \leq 1+\omega$ (since ω is the smallest limit). ω is a limit, so $1+\omega=\sup _{\alpha<\omega} 1+\alpha$. Since ω is closed under,$+ 1+\alpha<\omega$ for all $\alpha<\omega$, hence $\sup _{\alpha<\omega} \leq \omega$. It follows that $1+\omega=\omega$.
Remark 3.9. Right-Monotoniticy does not hold: Clearly, $0<1$ and we've seen that $0+\omega=\omega$ and $1+\omega=\omega$. So $0+\omega \nless 1+\omega$.

3.2. Comparisons of Multiplications.

Lemma 3.10. For all $\alpha, \beta: \alpha+\beta=0$ iff $\alpha=\beta=0$.
Proof. Reverse direction is trivial. So suppose $\alpha+\beta=0$ and not $\alpha=\beta=0$. If $\beta=0$, then $0=\alpha+\beta=\alpha$ and if $\beta>0$, by LeftMonotonicity $0 \leq \alpha+0<\alpha+\beta=0$.
Lemma 3.11. If α and $\beta \neq 0$ are ordinals, then $\alpha \leq \alpha \cdot \beta$.
Proof. By induction on β. Suppose $\beta=\gamma+1$, then $\alpha \cdot \beta=(\alpha \cdot \gamma)+\alpha \geq \alpha$, by induction and the corresponding lemma on addition.

Suppose β is a limit. $\alpha \cdot \beta=\bigcup_{\gamma<\beta}(\alpha \cdot \gamma)=\sup _{\gamma<\beta}(\alpha \cdot \gamma) \geq \sup _{\gamma<\beta} \alpha=$ α.

Lemma 3.12. If $\alpha \neq 0$ and β are ordinals, then $\beta \leq \alpha \cdot \beta$.
Proof. By induction on β. $\beta=0$ is trivial. Suppose $\beta=\gamma+1$, then:
$\alpha \cdot \beta=(\alpha \cdot \gamma)+\alpha>\alpha \cdot \gamma \quad$ (since $\alpha>0$ and by Left-Monotonicity)

And $\alpha \cdot \beta>\gamma$ implies $\alpha \cdot \beta \geq \gamma+1=\beta$.
Suppose β is a limit. $\alpha \cdot \beta=\bigcup_{\gamma<\beta}(\alpha \cdot \gamma)=\sup _{\gamma<\beta}(\alpha \cdot \gamma) \geq \sup _{\gamma<\beta} \gamma=$ β.

Lemma 3.13. If γ is a limit, then for all $\alpha \neq 0: \alpha \cdot \gamma$ is a limit.
Proof. $\gamma \neq 0$, so $\alpha \cdot \gamma \geq \gamma>0$, i.e. $\alpha \cdot \gamma \neq 0$. So let $x \in \alpha \cdot \gamma$. Show that $x+1<\alpha \cdot \gamma$.
$x \in \alpha \cdot \gamma=\bigcup_{\beta<\gamma}(\alpha \cdot \beta)$, i.e. there is $\beta<\gamma$ such that $x \in \alpha \cdot \beta$. By a previous lemma, $x+1 \leq \alpha \cdot \beta$. If $x+1 \in \alpha \cdot \beta, x+1<\alpha \cdot \gamma$.

So suppose $\alpha \cdot \beta=x+1$. Since γ is a limit, $\beta+1<\gamma$ and by definition $\alpha \cdot(\beta+1)=(\alpha \cdot \beta)+\alpha$, and $x+1 \in(\alpha \cdot \beta)+1 \leq(\alpha \cdot \beta)+\alpha$ by Left-Monotonicity (since $\alpha \geq 1$). Hence $x+1 \in \alpha \cdot \gamma$.

Lemma 3.14. Suppose γ is a limit, $\alpha \neq 0$ and β are ordinals and $\beta<\gamma$. Then $\alpha \cdot \beta<\alpha \cdot \gamma$.

Proof. By definition, $\alpha \cdot \gamma=\bigcup_{\delta<\gamma}(\alpha \cdot \delta)$. Since γ is a limit, $\beta+1<\gamma$. By Left-Monotonicity: $\alpha \cdot \beta<(\alpha \cdot \beta)+\alpha=\alpha \cdot(\beta+1) \in\{\alpha \cdot \delta \mid \delta<\gamma\}$. Hence $\alpha \cdot \beta \in \bigcup_{\delta<\gamma} \alpha \cdot \delta$.

Lemma 3.15. Suppose $\alpha \neq 0$ and β, γ are ordinals and $\beta<\gamma$. Then $\alpha \cdot \beta<\alpha \cdot \gamma$.

Proof. By induction over $\gamma . \gamma=0$ is clear and the previous lemma is the limit step. So we need to cover the successor step. Suppose $\gamma=\delta+1$. Then $\beta<\gamma$ means $\beta \leq \delta$. If $\beta=\delta$, apply Left-Monotonicity: $\alpha \cdot \beta=\alpha \cdot \delta<(\alpha \cdot \delta)+\alpha=\alpha \cdot(\delta+1)=\alpha \cdot \gamma$.

If $\beta<\delta$, apply induction: $\alpha \cdot \beta<\alpha \cdot \delta$. Hence (by Left-Monotonicity) $\alpha \cdot \beta<\alpha \cdot \delta<(\alpha \cdot \delta)+\alpha=\alpha \cdot(\delta+1)=\alpha \cdot \gamma$.

Theorem 3.16 (Left-Monotonicity of Ordinal Multiplication). Let α, β, γ be ordinals. The following are equivalent:
i. $\beta<\gamma \wedge \alpha>0$.
ii. $\alpha \cdot \beta<\alpha \cdot \gamma$.

Proof. The previous lemma shows the forward direction. So assume $\alpha \cdot \beta<\alpha \cdot \gamma$ and not $\beta<\gamma$. If $\alpha=0$, then $\alpha \cdot \beta=0=\alpha \cdot \gamma$ 亿. So $\alpha>0$. By linearity, $\gamma \leq \beta$. If $\gamma=\beta, \alpha \cdot \gamma=\alpha \cdot \beta<\alpha \cdot \gamma$. If $\gamma<\beta$, by the forward direction, $\alpha \cdot \gamma<\alpha \cdot \beta<\alpha \cdot \gamma$.

Lemma 3.17. Let $2=1+1.2 \cdot \omega=\omega$.
Proof. Since ω is the smallest limit and by a lemma above $2 \cdot \omega$ is a limit, $\omega \leq 2 \cdot \omega$. Since ω is closed under \cdot, for all $\alpha<\omega, 2 \cdot \alpha \in \omega$. Hence $2 \cdot \omega=\sup _{\alpha<\omega} 2 \cdot \alpha \leq \omega$.
Remark 3.18. Right-Monotonicity does not hold: Clearly, $1<2$ and since $1 \cdot \omega=\omega$ and $2 \cdot \omega=\omega, 1 \cdot \omega \nless 2 \cdot \omega$.

3.3. Comparisons of Exponentation.

Lemma 3.19. If α and $\beta \neq 0$ are ordinals, then $\alpha \leq \alpha^{\beta}$.
Proof. If $\alpha=0$ the lemma is trivial. So suppose $\alpha>0$.
By induction on β. Suppose $\beta=\gamma+1$, then $\alpha^{\beta}=\left(\alpha^{\gamma}\right) \cdot \alpha \geq \alpha$, by induction and the corresponding lemma on multiplication.

Suppose β is a limit. $\alpha^{\beta}=\bigcup_{\gamma<\beta}\left(\alpha^{\gamma}\right)=\sup _{\gamma<\beta}\left(\alpha^{\gamma}\right) \geq \sup _{\gamma<\beta} \alpha=$ α.

Lemma 3.20. If $\alpha>1$ and β are ordinals, then $\beta \leq \alpha^{\beta}$.
Proof. If $\beta=0$ the lemma is trivial. So suppose $\beta>0$.
By induction on β. Suppose $\beta=\gamma+1$, then:

$$
\begin{aligned}
\alpha^{\beta} & =\left(\alpha^{\gamma}\right) \cdot \alpha>\alpha^{\gamma} \cdot 1 & \text { (by Left-Monotonicity) } \\
& =\alpha^{\gamma} \geq \gamma & \text { (by induction). }
\end{aligned}
$$

And $\alpha^{\beta}>\gamma$ implies $\alpha^{\beta} \geq \gamma+1=\beta$.
Suppose β is a limit. $\alpha^{\beta}=\bigcup_{\gamma<\beta}\left(\alpha^{\gamma}\right)=\sup _{\gamma<\beta}\left(\alpha^{\gamma}\right) \geq \sup _{\gamma<\beta} \gamma=$ β.

Lemma 3.21. If γ is a limit, then for all $\alpha>1: \alpha^{\gamma}$ is a limit.
Proof. $\gamma \neq 0$, so $\alpha^{\gamma} \geq \gamma>0$, i.e. $\alpha^{\gamma} \neq 0$. So let $x \in \alpha^{\gamma}$. Show that $x+1<\alpha^{\gamma}$.
$x \in \alpha^{\gamma}=\bigcup_{\beta<\gamma}\left(\alpha^{\beta}\right)$, i.e. there is $\beta<\gamma$ such that $x \in \alpha^{\beta}$. By a previous lemma, $x+1 \leq \alpha^{\beta}$. If $x+1 \in \alpha^{\beta}, x+1<\alpha^{\gamma}$.
So suppose $\alpha^{\beta}=x+1$. Since γ is a limit, $\beta+1<\gamma$ and by definition $\alpha^{\beta+1}=\left(\alpha^{\beta}\right) \cdot \alpha$, and $x+1 \in\left(\alpha^{\beta}\right)+1 \leq \alpha^{\beta}+\alpha^{\beta} \leq \alpha^{\beta} \cdot 2 \leq \alpha^{\beta} \cdot \alpha$ by Left-Monotonicity (since $\alpha \geq 2$). Hence $x+1 \in \alpha \cdot \gamma$.

Lemma 3.22. Suppose γ is a limit, $\alpha>1$ and β are ordinals and $\beta<\gamma$. Then $\alpha^{\beta}<\alpha^{\gamma}$.

Proof. By definition, $\alpha^{\gamma}=\bigcup_{\delta<\gamma}\left(\alpha^{\delta}\right)$. Since γ is a limit, $\beta+1<\gamma$. By Left-Monotonicity: $\alpha^{\beta}<\left(\alpha^{\beta}\right) \cdot \alpha=\alpha^{\beta+1} \in\left\{\alpha^{\delta} \mid \delta<\gamma\right\}$. Hence $\alpha^{\beta} \in \bigcup_{\delta<\gamma} \alpha^{\delta}$.

Lemma 3.23. Suppose $\alpha>1$ and β, γ are ordinals and $\beta<\gamma$. Then $\alpha^{\beta}<\alpha^{\gamma}$.

Proof. By induction over $\gamma . \gamma=0$ is clear and the previous lemma is the limit step. So we need to cover the successor step. Suppose $\gamma=\delta+1$. Then $\beta<\gamma$ means $\beta \leq \delta$. If $\beta=\delta$, apply Left-Monotonicity: $\alpha^{\beta}=\alpha^{\delta}<\left(\alpha^{\delta}\right) \cdot \alpha=\alpha^{\delta+1}=\alpha^{\gamma}$.

If $\beta<\delta$, apply induction: $\alpha^{\beta}<\alpha^{\delta}$. Hence (by Left-Monotonicity) $\alpha^{\beta}<\alpha^{\delta}<\left(\alpha^{\delta}\right) \cdot \alpha=\alpha^{\delta+1}=\alpha^{\gamma}$.

Theorem 3.24 (Left-Monotonicity of Ordinal Exponentiation). Let α, β, γ be ordinals and $\alpha>0$. The following are equivalent:
i. $\beta<\gamma \wedge \alpha>1$.
ii. $\alpha^{\beta}<\alpha^{\gamma}$.

Proof. The previous lemma shows the forward direction. So assume $\alpha^{\beta}<\alpha^{\gamma}$ and not $\beta<\gamma$. If $\alpha=1, \alpha^{\beta}=1=\alpha^{\gamma}$.

By linearity, $\gamma \leq \beta$. If $\gamma=\beta, \alpha^{\gamma}=\alpha^{\beta}<\alpha^{\gamma}$. If $\gamma<\beta$, by the forward direction, $\alpha^{\gamma}<\alpha^{\beta}<\alpha^{\gamma}$ 。.

Lemma 3.25. Let $0<n \in \omega$. $n^{\omega}=\omega$.
Proof. ω is the smallest limit and n^{ω} is a limit by a lemma above. So $\omega \leq n^{\omega}$. Since ω is closed under exponentiation, for all $\alpha<\omega, n^{\alpha} \in \omega$. Then $n^{\omega}=\sup _{\alpha<\omega} n^{\alpha} \leq \omega$.

Remark 3.26. Right-Monotonicity does not hold: Define $3=2+1 \in$ ω. Clearly, $2<3$ and since $2^{\omega}=\omega$ and $3^{\omega}=\omega, 2^{\omega} \nless 3^{\omega}$.

4. Associativity, Distributivity and Commutativity

Theorem 4.1. + , and exponentiation are not commutative, i.e. there are $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta$ such that $\alpha+\beta \neq \beta+\alpha, \gamma \cdot \delta \neq \delta \cdot \gamma$ and $\varepsilon^{\zeta} \neq \zeta^{\varepsilon}$.

Proof. Let $\alpha=1, \beta=\omega, \gamma=2, \delta=\omega, \varepsilon=0, \zeta=1$.
$1+\omega=\omega$ as shown above. $\omega \in \omega \cup\{\omega\}=\omega+1$, so $\alpha+\beta<\beta+\alpha$.
$2 \cdot \omega=\omega$ as shown above. By Left-Monotonicity, $\omega<\omega+\omega=\omega \cdot 2$. So $\gamma \cdot \delta<\delta \cdot \gamma$.
$0^{1}=0^{0} \cdot 0=0$, but $1^{0}=1$ by definition. Hence $\varepsilon^{\zeta}<\zeta^{\varepsilon}$.
Theorem 4.2 (Associativity of Ordinal Addition). Let α, β, γ be ordinals. Then $(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)$.

Proof. By induction on $\gamma \cdot \gamma=0$ is trivial. Suppose $\gamma=\delta+1$.

$$
\begin{aligned}
(\alpha+\beta)+(\delta+1) & =((\alpha+\beta)+\delta)+1 & & \text { (by definition) } \\
& =(\alpha+(\beta+\delta))+1 & & \text { (by induction) } \\
& =\alpha+((\beta+\delta)+1) & & \text { (by definition) } \\
& =\alpha+(\beta+(\delta+1)) & & \text { (by definition) } \\
& =\alpha+(\beta+\gamma) . & &
\end{aligned}
$$

Now suppose γ is a limit, in particular $\gamma>1$. Then $\beta+\gamma$ is a limit, so $\alpha+(\beta+\gamma)$ and $(\alpha+\beta)+\gamma$ are limits.

$$
\begin{array}{rlr}
(\alpha+\beta)+\gamma & =\sup _{\varepsilon<\gamma}((\alpha+\beta)+\varepsilon) & \text { (by definition) } \\
& =\sup _{\beta+\varepsilon<\beta+\gamma}((\alpha+\beta)+\varepsilon) & \text { (by Left-Monotonicity) } \\
& =\sup _{\beta+\varepsilon<\beta+\gamma}(\alpha+(\beta+\varepsilon)) & \text { (by induction) } \\
& =\sup _{\delta<\beta+\gamma}(\alpha+\delta) & \text { (see below) } \\
& =\alpha+(\beta+\gamma) & \text { (by definition). }
\end{array}
$$

Recall Lemma 2.12. Write $B=\{\alpha+(\beta+\varepsilon) \mid \beta+\varepsilon<\beta+\gamma\}$ and $A=\{\alpha+\delta \mid \delta<\beta+\gamma\}$. Clearly $B \subseteq A$.

Let $\alpha+\delta \in A$. Let $\varepsilon=\min \{\zeta \mid \beta+\zeta \geq \delta\}$. Obviously $\varepsilon \leq \gamma$. Assume $\varepsilon=\gamma$, then for each $\zeta<\gamma, \beta+\zeta<\delta$. Then $\delta<\beta+\gamma=$ $\sup _{\zeta<\gamma} \beta+\zeta \leq \delta$ 2. Hence, $\varepsilon<\gamma$, i.e. $\beta+\varepsilon<\beta+\gamma$. By construction, $\delta \leq \beta+\varepsilon$. Thus, by Left-Monotonicity, $\alpha+\delta \leq \alpha+(\beta+\varepsilon) \in B$. Thus, the conditions of Lemma 2.12 are satisfied.

Theorem 4.3 (Distributivity). Let α, β, γ be ordinals. Then $\alpha \cdot(\beta+$ $\gamma)=\alpha \cdot \beta+\alpha \cdot \gamma$.

Proof. Note that the theorem is trivial if $\alpha=0$, so suppose $\alpha>0$. Proof by induction on $\gamma \cdot \gamma=0$ is trivial. Suppose $\gamma=\delta+1$.

$$
\begin{aligned}
\alpha \cdot(\beta+(\delta+1)) & =\alpha \cdot((\beta+\delta)+1) & & \text { (by definition) } \\
& =\alpha \cdot(\beta+\delta)+\alpha & & \text { (by definition) } \\
& =\alpha \cdot \beta+\alpha \cdot \delta+\alpha & & \text { (by induction) } \\
& =\alpha \cdot \beta+\alpha \cdot(\delta+1) & & \text { (by definition). }
\end{aligned}
$$

Suppose γ is a limit. Hence $\alpha \cdot \gamma$ and $\beta+\gamma$ are limits.

$$
\begin{array}{rlr}
\alpha \cdot(\beta+\gamma) & =\sup _{\delta<\beta+\gamma} \alpha \cdot \delta & \text { (by definition) } \\
& =\sup _{\beta+\varepsilon<\beta+\gamma}(\alpha \cdot(\beta+\varepsilon)) & \text { (see below) } \\
& =\sup _{\varepsilon<\gamma}(\alpha \cdot(\beta+\varepsilon)) & \text { (by Left-Monotonicity) } \\
& =\sup _{\varepsilon<\gamma}(\alpha \cdot \beta+\alpha \cdot \varepsilon) & \text { (by induction) } \\
& =\sup _{\alpha \cdot \ll \cdot \gamma}(\alpha \cdot \beta+\alpha \cdot \varepsilon) & \text { (by Left-Monotonicity) } \\
& =\sup _{\zeta<\alpha \cdot \gamma}(\alpha \cdot \beta+\zeta) & \text { (see below) } \\
& =\alpha \cdot \beta+\alpha \cdot \gamma & \text { (by definition). }
\end{array}
$$

Recall Lemma 2.12. Write $B=\{\alpha \cdot(\beta+\varepsilon) \mid \beta+\varepsilon<\beta+\gamma\}$ and $A=\{\alpha \cdot \delta \mid \delta<\beta+\gamma\}$. Clearly $B \subseteq A$. Let $\alpha \cdot \delta \in A$. Let $\varepsilon=\min \{\eta \mid \beta+\eta \geq \delta\}$. Obviously $\varepsilon \leq \gamma$. Assume $\varepsilon=\gamma$, then for each $\eta<\gamma, \beta+\eta<\delta$. Then $\delta<\beta+\gamma=\sup _{\eta<\gamma} \beta+\eta \leq \delta$ 亿. Hence, $\varepsilon<\gamma$, i.e. $\beta+\varepsilon<\beta+\gamma$. By construction, $\delta \leq \beta+\varepsilon$. Thus, by Left-Monotonicity, $\alpha \cdot \delta \leq \alpha \cdot(\beta+\varepsilon) \in B$. Thus, the conditions of Lemma 2.12 are satisfied.

Write $B=\{\alpha \cdot \beta+\alpha \cdot \varepsilon \mid \alpha \cdot \varepsilon<\alpha \cdot \gamma\}$ and $A=\{\alpha \cdot \beta+\zeta \mid \zeta<\alpha \cdot \gamma\}$. Clearly $B \subseteq A$. Let $\alpha \cdot \beta+\zeta \in A$. Let $\varepsilon=\min \{\eta \mid \alpha \cdot \eta \geq \zeta\}$. Obviously $\varepsilon \leq \gamma$. Assume $\varepsilon=\gamma$, then for each $\eta<\gamma, \alpha \cdot \eta<\zeta$. Then $\zeta<\alpha \cdot \gamma=$ $\sup _{\eta<\gamma} \alpha \cdot \eta \leq \zeta$. Hence, $\varepsilon<\gamma$, i.e. $\alpha \cdot \varepsilon<\alpha \cdot \gamma$. By construction, $\zeta \leq \alpha \cdot \varepsilon$. Thus, by Left-Monotonicity, $\alpha \cdot \beta+\zeta \leq \alpha \cdot \beta+\alpha \cdot \varepsilon \in B$. Thus, the conditions of Lemma 2.12 are satisfied.

Theorem 4.4 (Associativity of Ordinal Multiplication). Let α, β, γ be ordinals. Then $(\alpha \cdot \beta) \cdot \gamma=\alpha \cdot(\beta \cdot \gamma)$.

Proof. Note that the theorem is trivial if $\beta=0$. So suppose $\beta>0$. Proof by induction on $\gamma \cdot \gamma=0$ is trivial. Suppose $\gamma=\delta+1$.

$$
\begin{array}{rlr}
(\alpha \cdot \beta) \cdot(\delta+1) & =((\alpha \cdot \beta) \cdot \delta)+(\alpha \cdot \beta) & \text { (by definition) } \\
& =(\alpha \cdot(\beta \cdot \delta))+(\alpha \cdot \beta) & \text { (by induction) } \\
& =\alpha \cdot((\beta \cdot \delta)+\beta) & \text { (by Distributivity) } \\
& =\alpha \cdot(\beta \cdot(\delta+1)) & \text { (by definition) } \\
& =\alpha \cdot(\beta \cdot \gamma) . &
\end{array}
$$

Now suppose γ is a limit, in particular $\gamma>1$. Then $\beta \cdot \gamma$ is a limit, so $\alpha \cdot(\beta \cdot \gamma)$ and $(\alpha \cdot \beta) \cdot \gamma$ are limits.

$$
\begin{array}{rlr}
(\alpha \cdot \beta) \cdot \gamma & =\sup _{\varepsilon<\gamma}((\alpha \cdot \beta) \cdot \varepsilon) & \text { (by definition) } \\
& =\sup _{\beta \cdot \varepsilon<\beta \cdot \gamma}((\alpha \cdot \beta) \cdot \varepsilon) & \text { (by Left-Monotonicity) } \\
& =\sup _{\beta \cdot \varepsilon<\beta \cdot \gamma}(\alpha \cdot(\beta \cdot \varepsilon)) & \text { (by induction) } \\
& =\sup _{\delta<\beta \cdot \gamma}(\alpha \cdot \delta) & \text { (see below) } \\
& =\alpha \cdot(\beta \cdot \gamma) & \text { (by definition). }
\end{array}
$$

Recall Lemma 2.12. Write $B=\{\alpha \cdot(\beta \cdot \varepsilon) \mid \beta \cdot \varepsilon<\beta \cdot \gamma\}$ and $A=\{\alpha \cdot \delta \mid \delta<\beta \cdot \gamma\}$. Clearly $B \subseteq A$. If $A=\emptyset, B=A$.

Let $\alpha \cdot \delta \in A$. Let $\varepsilon=\min \{\zeta \mid \beta \cdot \zeta \geq \delta\}$. Obviously $\varepsilon \leq \gamma$. Assume $\varepsilon=\gamma$, then for each $\zeta<\gamma, \beta \cdot \zeta<\delta$. Then $\delta<\beta \cdot \gamma=\sup _{\zeta<\gamma} \beta \cdot \zeta \leq \delta$ д. Hence, $\varepsilon<\gamma$, i.e. $\beta \cdot \varepsilon<\beta \cdot \gamma$. By construction, $\delta \leq \beta \cdot \varepsilon$. Thus, by Left-Monotonicity, $\alpha \cdot \delta \leq \alpha \cdot(\beta \cdot \varepsilon) \in B$. Thus, the conditions of Lemma 2.12 are satisfied.

Notation 4.5. As of now, we may omit bracketing ordinal addition and multiplication.

Remark 4.6. Ordinal exponentiation is not associative, i.e. there are α, β, γ with $\alpha^{\left(\beta^{\gamma}\right)} \neq\left(\alpha^{\beta}\right)^{\gamma}$.

Proof. Let $\alpha=\omega, \beta=1, \gamma=\omega$. Then $\beta^{\gamma}=1$, i.e. $\alpha^{\left(\beta^{\gamma}\right)}=\alpha^{1}=\omega$. But $\alpha^{\beta}=\omega$, hence $\left(\alpha^{\beta}\right)^{\gamma}=\omega^{\omega}$. And $\omega<\omega^{\omega}$ by Left-Monotonicity.

Theorem 4.7. Let α, β, γ be ordinals. Then $\alpha^{\beta+\gamma}=\alpha^{\beta} \cdot \alpha^{\gamma}$.
Proof. Recall that $\beta+\gamma=0$ iff $\beta=\gamma=0$, so the theorem holds for $\alpha=0$. Also note that the theorem is trivial for $\alpha=1$, so suppose $\alpha>1$. Proof by induction on $\gamma \cdot \gamma=0$ is trivial. Suppose $\gamma=\delta+1$.

$$
\begin{aligned}
\alpha^{\beta+\delta+1} & =\alpha^{\beta+\delta} \cdot \alpha & & (\text { by definition) } \\
& =\alpha^{\beta} \cdot \alpha^{\delta} \cdot \alpha & & (\text { by induction) } \\
& =\alpha^{\beta} \cdot \alpha^{\delta+1} & & (\text { by definition }) .
\end{aligned}
$$

Suppose γ is a limit. Then α^{γ} and $\alpha^{\beta+\gamma}$ are limits.

$$
\begin{array}{rlr}
\alpha^{\beta+\gamma} & =\sup _{\delta<\beta+\gamma} \alpha^{\delta} & \text { (by definition) } \\
& =\sup _{\beta+\varepsilon<\beta+\gamma} \alpha^{\beta+\varepsilon} & \text { (see below) } \\
& =\sup _{\varepsilon<\gamma} \alpha^{\beta+\varepsilon} & \text { (by Left-Monotonicity) } \\
& =\sup _{\varepsilon<\gamma}\left(\alpha^{\beta} \cdot \alpha^{\varepsilon}\right) & \text { (by induction) } \\
& =\sup _{\alpha^{\varepsilon}<\alpha^{\gamma}}\left(\alpha^{\beta} \cdot \alpha^{\varepsilon}\right) & \text { (by Left-Monotonicity) } \\
& =\sup _{\zeta<\alpha^{\gamma}}\left(\alpha^{\beta} \cdot \zeta\right) & \text { (see below) } \\
& =\alpha^{\beta}+\alpha^{\gamma} & \text { (by definition). }
\end{array}
$$

Recall Lemma 2.12. Write $B=\left\{\alpha^{\beta+\varepsilon} \mid \beta+\varepsilon<\beta+\gamma\right\}$ and $A=\left\{\alpha^{\delta} \mid\right.$ $\delta<\beta+\gamma\}$. Clearly $B \subseteq A$. Let $\alpha^{\delta} \in A$. Let $\varepsilon=\min \{\eta \mid \beta+\eta \geq \delta\}$. Obviously $\varepsilon \leq \gamma$. Assume $\varepsilon=\gamma$, then for each $\eta<\gamma, \beta+\eta<\delta$. Then $\delta<\beta+\gamma=\sup _{\eta<\gamma} \beta+\eta \leq \delta$. Hence, $\varepsilon<\gamma$, i.e. $\beta+\varepsilon<\beta+\gamma$. By construction, $\delta \leq \beta+\varepsilon$. Thus, by Left-Monotonicity, $\alpha^{\delta} \leq \alpha^{\beta+\varepsilon} \in B$. Thus, the conditions of Lemma 2.12 are satisfied.

Write $B=\left\{\alpha^{\beta} \cdot \alpha^{\varepsilon} \mid \alpha^{\varepsilon}<\alpha^{\gamma}\right\}$ and $A=\left\{\alpha^{\beta} \cdot \zeta \mid \zeta<\alpha^{\gamma}\right\}$. Clearly $B \subseteq A$. Let $\alpha^{\beta} \cdot \zeta \in A$. Let $\varepsilon=\min \left\{\eta \mid \alpha^{\eta} \geq \zeta\right\}$. Obviously $\varepsilon \leq \gamma$. Assume $\varepsilon=\gamma$, then for each $\eta<\gamma, \alpha^{\eta}<\zeta$. Then $\zeta<\alpha^{\gamma}=$ $\sup _{\eta<\gamma} \alpha^{\eta} \leq \zeta$. Hence, $\varepsilon<\gamma$, i.e. $\alpha^{\varepsilon}<\alpha^{\gamma}$. By construction, $\zeta \leq \alpha^{\varepsilon}$. Thus, by Left-Monotonicity, $\alpha^{\beta} \cdot \zeta \leq \alpha^{\beta}+\alpha^{\varepsilon} \in B$. Thus, the conditions of Lemma 2.12 are satisfied.

5. The Cantor Normal Form

Lemma 5.1. If $\alpha<\beta$ and $n, m \in \omega \backslash\{0\}, \omega^{\alpha} \cdot n<\omega^{\beta} \cdot m$.
Proof. $\alpha+1 \leq \beta$, so $\omega^{\alpha+1} \leq \omega^{\beta}$ by Left-Monotonicity (of exponentiation). Hence (by Left-Monotonicity of multiplication), $\omega^{\alpha} \cdot n<\omega^{\alpha} \cdot \omega=$ $\omega^{\alpha+1} \leq \omega^{\beta} \leq \omega^{\beta} \cdot m$.

Lemma 5.2. If $\alpha_{0}>\alpha_{1}>\ldots>\alpha_{n}$, and $m_{1}, \ldots, m_{n} \in \omega$, then $\omega^{\alpha_{0}}>\sum_{1 \leq i \leq n} \omega^{\alpha_{i}} \cdot m_{i}$.
Proof. If any $m_{i}=0$ it may just be omitted from the sum. So suppose all $m_{i}>0 . n=0$ and $n=1$ are the trivial cases. Consider $n=2$:
$\omega^{\alpha_{1}} \cdot m_{1}+\omega^{\alpha_{2}} \cdot m_{2} \leq \omega^{\alpha_{1}} \cdot m_{1}+\omega^{\alpha_{1}} \cdot m_{1}$ by the lemma above and Left-Monotonicity of addition. Then again by the previous lemma $\omega^{\alpha_{1}} \cdot m_{1} \cdot 2<\omega^{\alpha_{0}}$.

Continue via induction: Suppose the lemma holds for n. Then consider the sequence $\alpha_{1}, \ldots, \alpha_{n}$. It follows that $\sum_{2 \leq i \leq n+1} \omega^{\alpha_{i}} \cdot m_{i}<\omega^{\alpha_{1}}$. By the $n=2$ case, $\omega^{\alpha_{0}}>\omega^{\alpha_{1}} \cdot m_{1}+\omega^{\alpha_{1}}$ and by Left-Monotonicity of addition, $\omega^{\alpha_{1}} \cdot m_{1}+\omega^{\alpha_{1}}>\sum_{1 \leq i \leq n} \omega^{\alpha_{i}} \cdot m_{i}$.
Theorem 5.3 (Cantor Normal Form (CNF)). For every ordinal α, there is a unique $k \in \omega$ and unique tuples $\left(m_{0}, \ldots, m_{k}\right) \in(\omega \backslash\{0\})^{k}$, $\left(\alpha_{0}, \ldots, \alpha_{k}\right)$ of ordinals with $\alpha_{0}>\ldots>\alpha_{k}$ such that:

$$
\alpha=\omega^{\alpha_{0}} \cdot m_{0}+\ldots+\omega^{\alpha_{k}} \cdot m_{k}
$$

Proof. Existence by induction on α : If $\alpha=0$, then $k=0$. Suppose that every $\beta<\alpha$ has a CNF. Let $\hat{\alpha}=\sup \left\{\gamma \mid \omega^{\gamma} \leq \alpha\right\}$ and let $\hat{m}=\sup \left\{m \in \omega \mid \omega^{\hat{\alpha}} \cdot m \leq \alpha\right\}$. Note that $\omega^{\hat{\alpha}} \leq \alpha$: If not, then $\alpha \in \omega^{\hat{\alpha}}$. Then there is $\gamma, \omega^{\gamma} \leq \alpha$ with $\alpha \in \gamma$. But since $\omega^{\alpha+1}>\omega^{\alpha} \geq \alpha$, $\gamma<\alpha+1$, i.e. $\gamma \leq \alpha$.

Also note that $\hat{m} \in \omega$: If not, then $\hat{m}=\omega$, hence: $\alpha<\omega^{\hat{\alpha}+1}=$ $\omega^{\hat{\alpha}} \cdot \omega=\sup _{n \in \omega} \omega^{\hat{\alpha}} \cdot n \leq \alpha^{2}$.

By construction, $\omega^{\hat{\alpha}} \cdot \hat{m} \leq \alpha$, so there is $\varepsilon \leq \alpha$ with $\alpha=\omega^{\hat{\alpha}} \cdot \hat{m}+\varepsilon$. Show that $\varepsilon<\alpha$: Suppose not, then $\varepsilon \geq \alpha$, hence $\varepsilon \geq \omega^{\hat{\alpha}}$, so there is $\zeta \leq \varepsilon$ with $\varepsilon=\omega^{\hat{\alpha}}+\zeta$, i.e. $\alpha=\omega^{\hat{\alpha}} \cdot \hat{m}+\omega^{\hat{\alpha}}+\zeta$. By left-distributivity, $\alpha=\omega^{\hat{\alpha}} \cdot(\hat{m}+1)+\zeta \geq \omega^{\hat{\alpha}} \cdot(\hat{m}+1)$, contradicting the choice of \hat{m}.

Thus, by induction, ε has a CNF $\sum_{i \leq l} \omega^{\beta_{i}} \cdot n_{i}$. Note that $\beta_{0} \leq \hat{\alpha}$: If not, $\beta_{0}>\hat{\alpha}$, i.e. by the choice of $\hat{\alpha}, \omega^{\beta_{0}}>\alpha$, so $\varepsilon \geq \omega^{\beta_{0}}>\alpha$.

Now state the CNF of α : If $\beta_{0}<\hat{\alpha}$ set $k=l+1, \alpha_{0}=\hat{\alpha}, m_{0}=\hat{m}$ and $\alpha_{i}=\beta_{i-1}, m_{i}=n_{i-1}$ for $1 \leq i \leq k$. And if $\beta_{0}=\hat{\alpha}$ set $k=l$, $m_{0}=n_{0}+\hat{m}, \alpha_{0}=\hat{\alpha}$ and $\alpha_{i}=\beta_{i}, m_{i}=n_{i}$ for $1 \leq i \leq k$.

Uniqueness: Suppose not and let α be the minimal counterexample. Let $\alpha=\omega^{\alpha_{0}} \cdot m_{0}+\ldots+\omega^{\alpha_{m}} \cdot m_{m}=\omega^{\beta_{0}} \cdot n_{0}+\ldots+\omega^{\beta_{n}} \cdot n_{n}$. Obviously $\alpha>0$, i.e. the sums are not empty.

Show $\alpha_{0}=\beta_{0}$: Suppose not, wlog assume $\alpha_{0}>\beta_{0}$. Consider the previous lemma. Then $\alpha \geq \omega^{\alpha_{0}} \cdot m_{0}>\omega^{\beta_{0}} \cdot n_{0}+\ldots+\omega^{\beta_{n}} \cdot n_{n}=\alpha$.

Then show $m_{0}=n_{0}$: Suppose not, wlog assume $m_{0}<n_{0}$. Then, again by the previous lemma, $\omega^{\alpha_{0}}>\sum_{1 \leq i \leq m} \omega^{\alpha_{i}} \cdot m_{i}$. So, by LeftMonotonicity of addition, $\alpha<\omega^{\alpha_{0}} \cdot m_{0}+\omega^{\alpha_{0}}$, i.e. $\alpha<\omega^{\alpha_{0}} \cdot\left(m_{0}+1\right) \leq$ $\omega^{\alpha_{0}} \cdot n_{0} \leq \alpha^{2}$.

So $\omega^{\alpha_{0}} \cdot m_{0}=\omega^{\beta_{0}} \cdot n_{0}$, so by Left-Monotonicity, $\omega^{\alpha_{1}} \cdot m_{1}+\ldots+\omega^{\alpha_{m}}$. $m_{m}=\omega^{\beta_{1}} \cdot n_{1}+\ldots+\omega^{\beta_{n}} \cdot n_{n}$. These terms are strictly smaller than α by the previous lemma. By minimality of $\alpha, m=n$, and the α 's, β 's, m 's and n 's are equal. Thus α has a unique CNF \downarrow.

