ORDINAL ARITHMETIC
JULIAN J. SCHLODER

ABSTRACT. We define ordinal arithmetic and show laws of Left-
Monotonicity, Associativity, Distributivity, some minor related prop-
erties and the Cantor Normal Form.

1. ORDINALS
Definition 1.1. A set x is called transitive iff Vy € aVz € y : z € x.

Definition 1.2. A set a is called an ordinal iff o transitive and all
0 € a are transitive. Write o € Ord.

Lemma 1.3. If a is an ordinal and 3 € «, then (8 is an ordinal.

Proof. 3 is transitive, since it is in a. Let v € 5. By transitivity of «,
v € a. Hence 7y is transitive. Thus (3 is an ordinal. 0

Definition 1.4. If a is a set, define a+1=aU {a}.

Remark 1.5. () is an ordinal. Write 0 = (). If o is an ordinal, so is
a4+ 1.

Definition 1.6. If a and 3 are ordinals, say a < ( iff o € 3.
Lemma 1.7. For all ordinals o, « < av + 1.

Proof. a € {a},soa € aU{a} =a+ 1. O
Notation 1.8. From now on, «a, 3,7,90,¢,(,n denote ordinals.

Theorem 1.9. The ordinals are linearly ordered 1i.e.
i. YVa: a £ a (strictness).
. YaVpVy :a < BA B <y — a < v (transitivity).
iii. VaVG:a < VB < aVa=pf (linearity).

Proof. “1.” follows from (Found).

“ii.” follows from transitivity of the ordinals.

“1ii.”: Assume this fails. By (Found), choose a minimal « such that
some [ is neither smaller, larger or equal to a. Choose the minimal

such . Show towards a contradiction that o = (:
1
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Let v € . By minimality of o, y < SV <yV B =7~ If g =7,
0 <as. If 3 <vythen by “ii.” < ag. Thusv < 3,i.e. v € . Hence
a CS.

Let v € #. By minimality of 3, y < aVa<yVa=~. If a =7,
a < B4. If a <~ then by “ii” a < 4. Thus v < a, i.e. 7 € a. Hence

B8 C . U
Lemma 1.10. If o # 0 is an ordinal, 0 < «, i.e. 0 is the smallest
ordinal.

Proof. Since o # 0, by linearity a < 0 or 0 < «, but o < 0 would mean
aelds. O

Definition 1.11. An ordinal « is called a successor iff there is a (3
with o = 3+ 1. Write a € Suc.

An ordinal o # () is called a limit if it is no successor. Write a €
Lim.

Remark 1.12. By definition, every ordinal is either () or a successor
or a limit.

Lemma 1.13. For all ordinals o, B: If B < a+1, then § < aV [ = «,
re. 0 <a.

Proof. Let f < a+1,1ie. (€ aU{a}. By definition of U, 5 € « or
ge{alie feaVp=a. O

Lemma 1.14. For all ordinals o, 5: If B < «, then 6+ 1 < a.

Proof. Suppose this fails for some «, 3. Then by linearity, 5+ 1 > «,
hence by the previous lemma o < (3. Hence by transitivity § < a < 3,
contradicting strictness. 0

Lemma 1.15. For all o, there is no f with a < < o+ 1.

Proof. Assume there are such o and 3. Then, since § < a+ 1, § < a,
but since a < 3, by linearity o < «a, contradicting strictness. U

Lemma 1.16. For all «, (3, if there is no v with o < v < (3, then

b=a+1.
Proof. Suppose f# a+1. Since a < 3, a+1 < 3,80 a+1 < 3. Then
a + 1 is some such 7. U

Lemma 1.17. The operation +1 : Ord — Ord s injective.

Proof. Let a # [ be ordinals. Wlog o < (3. Then by the previous
lemmas, a +1 <<+ 1, iea+1#F+1. O

Lemma 1.18. a € Lim iff VB < a:f+1 < a and a # 0.
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Proof. Let o € Lim, § < a. By linearity, 4+ 1<aVa<pf+1V 3+
1 = «a. The last case is excluded by definition of limits. So suppose
a<fB+1 Thena=pVa<f.

Since [ < a, a = § implies a < «, contradicting strictness.

By linearity, a < (8 implies § < 3, contradicting strictness.

Thus 6+ 1 < a.

Now suppose a # 0 and V3 < a.: f+1 < . Assume « € Suc. Then
there is 3 such that o« = f+ 1. Then g < f+ 1 = a, thus § < a, i.e.
B+1<a Then a =41 < «, contradicting strictness. Hence « is
a limit. O

Theorem 1.19 (Ordinal Induction). Let ¢ be a property of ordinals.
Suppose the following holds:
1. ¢(0) (base step).
ii. Vo : p(a) — p(a + 1) (successor step).
iii. Va € Lim : (VG < a: ¢(f)) — ¢(a) (limit step).
Then p(a) holds for all ordinals .

Proof. Suppose i, ii and iii hold. Assume there is some « such that
—p(a). By (Found), take the smallest such .

Suppose a = ). This contradicts i.

Suppose a € Suc. Then there is 3 such that o = 3 4+ 1, since
B < fB+1, 5 < aand hence by minimality of o, p(3). By ii, ¢(«)4.

Suppose « € Lim. By minimality of o, all § < « satisfy ¢(3). Thus
by i, o(a).

Hence there can’t be any such «a. U

Definition 1.20. Let w be the (inclusion-)smallest set that contains 0
and is closed under +1, i.e. Vx e w:x + 1 € w.
More formally, w=[{w |0 €EwAYv €Ew:v+ 1€ w}.

Remark 1.21. w is a set by the Axiom of Infinity.
Theorem 1.22. w is an ordinal.

Proof. Consider w N Ord. This set contains 0 and is closed under +1,
as ordinals are closed under +1. So w must by definition be a subset
of wN Ord, i.e. w contains only ordinals.

Hence it suffices to show that w is transitive. Consider ' = {z |
rEwAYy €x:y € w} Clearly, 0 € W'. Let x € w and show that
r+1led.

By definition, s +1 € w. Let y ez +1,ie. y=2axVy ez Ify=u=x,
y € w. If y € x then y € w by definition of w’. Hence z + 1 € /'

Thus w’ contains 0 and is closed under +1, i.e. w C w'. But o’ Cw
by defintion, hence w = ', i.e. w is transitive. O
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Theorem 1.23. w is a limit, in particular, it is the smallest limit
ordinal.

Proof. w # 0, since 0 € w. Let a < w. Then a + 1 < w by definition.
Assume v < w is a limit ordinal. Since vy # ), 0 € 7. Also, as a limit,
v is closed under +1. Hence vy contradicts the minimality of w. U

2. ORDINAL ARITHMETIC

Definition 2.1. Define an ordinal 1 :=0+ 1 = {0}.
Lemma 2.2. 1 € w.
Proof. 0 € w and w is closed under +1. O

Definition 2.3. Let o, 3 be ordinals. Define ordinal addition recur-
sively:
i.a+0=a.
ii. If B €Suc, B=7+1, definea+ 3= (a+7)+1.
iii. If B € Lim, define o+ =, _z(a+7).

Remark 2.4. By this definition, the sum o+ 1 of an ordinal o and
the ordinal 1 = {0} is the same as a +1 = a U {a}.

Definition 2.5. Let o, be ordinals. Define ordinal multiplication
recursively:
i a-0=0.
ii. If € Suc, B=7+1, definea-f=(a-7)+a.
iii. If 8 € Lim, define a- 8 =J,_4(a 7).

Definition 2.6. Let o, 3 be ordinals. Define ordinal exponentiation
recursively:
i. o’ =1.
ii. If 3 € Suc, B =7+ 1, define o’ = (a7) - a.
iii. If 3 € Lim and o > 0, define o = |J.,_4(a”). If a = 0, define
o’ =0.

v<B

Lemma 2.7. If A is a set of ordinals, |J A is an ordinal.

Proof. Let A be a set of ordinals, define a = J A.

Let x € y € a, then there is an o € A such that z € y € a, so x € «
hence x € a. Thus, a is transitive. Let z € a. There is a € A such
that z € a, hence z is transitive.

Thus a is transitive and every element of a is transitive, i.e. a is an

ordinal. O
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Remark 2.8. By induction and this lemma, the definitions of +, - and
exponentiation above are well-defined, i.e. if a, B are ordinals, o + (3,
a- 3 and o® are again ordinals.

Definition 2.9. Let A be a set of ordinals. The supremum of A is
definied as: sup A = min{a | VG € A: 3 < a}.

Lemma 2.10. Let A be a set of ordinals, then sup A = J A.

Proof. Since sup A is again an ordinal, it is just the set of all ordinals
smaller than it. Hence by linearity, sup A = {a | 30 € A : a < (}.
Which equals |J A by definition. O

Lemma 2.11. Let A be a set of ordinals. If sup A is a successor, then
sup A € A.

Proof. Assume supA =a+1¢ A, thenforall € A, < a+1,ie.
f<a ThensupA=a<a+1=supAs. O

Lemma 2.12. Let A be a set of ordinals, B C A such that Vo € A3p €
B:a<p. Thensup A =supB.

Proof. Show {v |Va € A:v>a}={y|VB € B:v >} Then the
minima of these sets, and hence the suprema of A and B, are equal.
Suppose v > « for all &« € A. Then, since B C A, v > « for all § € B.
Suppose v > ( for all € B. Let a € A, then there is some § € B
with 3 > «, hence v > > a. Thus 7 > «a for all a € A. O

Lemma 2.13. If v is a limit, ([Jy =supy ={,., @ =sup,, @ =1.

Proof. We’ve shown a more general form of the first equality, the second
and third are just a different ways of writing the same set. Assume
Y # SUPyry @, 1.6, Y < SUP,., & OF SUP,, & < 7 by linearity.

In the first case, there is @ < = such that v < «, ie. v < v
contradicting strictness.

In the second case, (sup,., @) + 1 < 7, since 7y is a limit. But
then, by definition of sup, (sup,.., @) +1 < sup, .., a while sup, ., o <
(Sup,, @) + 1, again contradicting strictness.

Lemma 2.14. For all a, 0 + a = «.

Proof. By induction on «. Since 0 4+ 0 = 0, the base step is trivial.
Suppose « = f+1and 0+ 3 = (3. Then 0+ a =0+ (8 + 1) =
0+8)+1=0+1=q.
Suppose a € Lim and for all 3 < o, 0+ 3 = 3. Then 0 + o =
Uscal0+8) = Upea 8 = 0

Lemma 2.15. Fforalla, 1-a=a-1=a.
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Proof. a-1=a-(0+1) = (a-0)+a = a. Prove 1-a = a by induction
on «a. Since 1-0 = 0, the base step holds.
Suppose « = f+1land 1-f=0. Thenl-a=(1-f)+1=F+1= .
Suppose « is a limit and for all 3 < o, 1 -6 = . Then 1-a =
Uﬁ<a(1'6):UB<a6:a‘ U

Lemma 2.16. For all o, o' = «.

0+1 0

Proof. ot ="l =a’-a=1-a=oa. 0

Lemma 2.17. For all o, 1* = 1.

Proof. If a = 0, 1 = 1 by definition. If a« = 3+ 1, 171 =18.1 = 1.
If v is a limit, 1% = supg,, 18 = Supg., 1 = 1. O

Lemma 2.18. Let o« be an ordinal. If « > 0, 04 = 0. Otherwise
0> =1.

Proof. 0° =1 by definition, solet > 0. f a =3+1,0*=0%-0=0.
If « is a limit, 0% = 0 by defnition. l

Theorem 2.19 (Subtraction). For all § < « there is some v < a with
f+v=a.

Proof. By induction on . a = 0 is trivial. Suppose a = § + 1 and
0 <a If 8=a set vy =0. Sosuppose f < «, i.e. f <. Find
v < pBwith f++"=06. Set y=~"+1,then 6+v=0+(y +1) =
B+y)+1=0+1=qa.

If a is a limit and 8 < « then for all § < a, § < ¢, find ~5 such
that 8+ s = 9. If 0 < 3, set s = 0. Set v = supgs5.,7s- If 7 is
a successor, then there is some § with v = 5. But § + 1 < « and as
in the successor case, V541 = 75 + 1 > 75 = 7, so this can’t be the
supremum.

Also, v # 0, since if it were, for all g < § <, § =9, i.e. there are
no such 9. This implies § + 1 = «, but « is no successor.

So, v is a limit. In particular for all 6 < «, 75 < : If there were
any 0 < v with v5 = 7, then since v # 0, # < 6. Then again 5,1 =
vs +1 > 5 = 7, contradicting that ~ is the supremum. Hence, +v =

sup. (8 +¢) = sup,, (B +75) = sup,,, 6 = sups, 6 = a.
U

Theorem 2.20. w is closed under +, - and exponentiation, i.e. ¥Yn, m €
w:n+mewAn-mewAn” €w.

Proof. By induction on m. Since w does not contain any limits, we
may omit the limit step.
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First consider addition. If m = 0 then n +m = m € w. Suppose
m=k+1. n+m=(n+k)+ 1. By induction n + k € w and since w
is closed under +1, (n + k) + 1 € w.

Now consider multiplication. If m = 0, n-0 = 0 € w. Suppose
m=k+1. n-m=(n-k)+n. Byinduction n -k € w and since w is
closed under +, (n- k) +n € w.

Finally consider exponentiation. If m = 0, n® = 1 € w. Suppose
m =k + 1. n™ = n*.n. By induction, n* € w and since w is closed
under -, n* - n € w. O

3. MONOTONICITY LAwS

3.1. Comparisons of Addition.
Lemma 3.1. If a and (3 are ordinals, and o < 3, then a+1 < 3+ 1.

Proof. Assume a < f and o+ 1 > 4 1. By transitivity it suffices to
now derive a contradiction. Since f+1 < a+1,+1=aVi+1< a.
f+1l=a, f+1<3, but B<f+14.
If 3+ 1 < «, by transitivity 5+ 1 < 3, but 8 < 3+ 14. O

Lemma 3.2. If a and (3 are ordinals, then o < o+ (3.

Proof. By induction on g: If 6 =0, a = o + .
fg=y+landa<a+y,thena+p=(a+vy)+1>a+1>a.
If 3 € Lim and for all v < 3, & < a4, then: a+8 =, 4(a+7) =

sup, gl +7v) = sup, g = . O

Lemma 3.3. If a and § are ordinals, then f < o+ 3.

Proof. By induction on 3: (# = 0 is trivial, since 0 is the smallest
ordinal.
fg=y+landy<a+~vy,thena+p=(a+~v)+1>~v+1=p0.
If # € Lim and for all y < 3, v < a+7, then: a+8 =, _4(a+7) =
sup,.g(a+7v) = sup, 57 = 3. O
Lemma 3.4. If v is a limit, then for all a: o+ is a limit.

Proof. v # 0,80 a4+~ >~ >0,ie. a+~v#0. Solet x € a+ . Show
that z +1 < a+ 1.
x€a+’y:Uﬁ<7(a—l—ﬁ), i.e. there is 6 < 7 such that x € a + (3.
By a previous lemma, x + 1 < a+ 8. lfe+1ca+3,v+1<a+7.
So suppose o + # = = + 1. Since 7 is a limit, 4+ 1 < v and by
definition a + (8 + 1) = (o + ) + 1, and z + 1 € (a + ) + 1, hence
r+lea+r. U

Lemma 3.5. Suppose ~v is a limit, o, 3 are ordinals and B < . then
a+f<a+r.
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Proof. By definition, a4~y = Uéq(a—i—é). Since 7 is a limit, 54+1 < 7.
Also by definition: a+0 < (a+5)+1=a+(8+1) € {a+d |5 <~}
Hence o+ 8 € U;., @ + 0. O

Lemma 3.6. Suppose a, 3, are ordinals and § < . then a + 3 <
o+ .

Proof. By induction over 7. v = 0 is clear, since there is no § < 0.
And the previous lemma is the limit step. So we need to cover the
successor step. Suppose ¥ =+ 1. Then § < v means g < ¢. If 3 =9,
notice: a+f=a+d<(a+d)+1l=a+0+1)=a+1.

If 6 < 4, apply induction: o+ < a+6. Hence a+f < (a+4d)+1 =
at+(0+1)=a+7. O
Theorem 3.7 (Left-Monotonicity of Ordinal Addition). Let «, 3,7 be
ordinals. The following are equivalent:

i <.

ii.a+pB<a+r.
Proof. The previous lemma shows the forward direction. So assume
a+ f < a+ v and not < 7. By linearity, v < . If v = [,
a+y=a+ 0 <a+vys. If v <p, by the forward direction, o + v <
a+f<a+vs4. O

Lemma 3.8. 1 +w =w.

Proof. 1+ w is a limit by a lemma above, so w < 1+ w (since w is the
smallest limit). w is a limit, so 1 +w = sup,.,, 1 + . Since w is closed
under +, 1 + a < w for all @ < w, hence sup,.,, < w. It follows that
l+w=w. U

Remark 3.9. Right-Monotoniticy does not hold: Clearly, 0 < 1 and
weve seen that 0+ w =w and 1 +w =w. So 0+ w £ 1 + w.

3.2. Comparisons of Multiplications.
Lemma 3.10. For all o, 3: a+ =0 iff a = =0.

Proof. Reverse direction is trivial. So suppose a + = 0 and not
a=p=0 IfpF=0then 0 = a+ = a and if § > 0, by Left-
Monotonicity 0 < a+0< a+ 4 =04. d

Lemma 3.11. If o and 5 # 0 are ordinals, then o < o - [3.

Proof. By induction on /3. Suppose § = v+1, then a8 = (a-y)+a > a,
by induction and the corresponding lemma on addition.

Suppose [ is a limit. -0 = U,Y<ﬁ(04"y) = Sup,,g(a+y) > sup,.ga =
Q. O
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Lemma 3.12. If o # 0 and (B are ordinals, then f < a - (3.
Proof. By induction on . = 0 is trivial. Suppose 3 =~ + 1, then:
a-f=(a-y)+a>a-y (since >0 and by Left-Monotonicity)
>y (by induction).
And a- >~y impliesa-g>~v+4+1=70.
Suppose 3 is a limit. a-3 =J,_z(a-y) = sup,g(a-y) > sup, 537 =
G. O
Lemma 3.13. If v is a limit, then for all o # 0: « -7y is a limit.

Proof. v #0,s0 a-vy >~ >0,ie. a-vy#0. Solet x € a-~. Show
that v +1 < a - 7.

$€a-7:Uﬂ<v(a-ﬂ),i.e. there is # < 7 such that x € o - 3. By
a previous lemma, r + 1 < a-B. lfr+1lca-f,z+1<a- 7.

So suppose « - 3 = x + 1. Since 7 is a limit, 7+ 1 < ~ and by
definition a- (B+1) = (a- )+, and z+1 € (a-F)+1 < (- ) + «
by Left-Monotonicity (since a > 1). Hence x + 1 € « - . O

Lemma 3.14. Suppose v is a limit, o # 0 and § are ordinals and
g <~. Then a- 3 < a-7.

Proof. By definition, o -y = (J;_, (a - §). Since 7 is a limit, 3+ 1 <.
By Left-Monotonicity: -4 < (a-8)+a=a-(6+1) € {a-6 |5 <~}
Hence a- 8 € s, v - 0. O

Lemma 3.15. Suppose o # 0 and (3, are ordinals and 3 < . Then
a-fB<a-ny.

Proof. By induction over 4. v = 0 is clear and the previous lemma
is the limit step. So we need to cover the successor step. Suppose
v=0+1. Then 8 < vymeans § < 9. If § =9, apply Left-Monotonicity:
a-f=a-0<(a-d)+a=a-(0+1)=a-7.

If 5 < ¢, apply induction: «a-( < «-§. Hence (by Left-Monotonicity)
a-f<a-d<(a-d)+a=a-(0+1)=a-7. O

Theorem 3.16 (Left-Monotonicity of Ordinal Multiplication). Let
a, 3,7 be ordinals. The following are equivalent:

i. B<yAa>0.

. a-f<a-y.
Proof. The previous lemma shows the forward direction. So assume
a-f<a-yandnot f<v. fa=0,thena-F=0=a-v4. Soa > 0.
By linearity, v < 3. f v =06, a-vy=a- - < a-v4. If v <, by the
forward direction, a-v < a -3 < a-7v4. O
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Lemma 3.17. Let2=1+1. 2 -w=w.

Proof. Since w is the smallest limit and by a lemma above 2 - w is a
limit, w < 2 -w. Since w is closed under -, for all @ < w, 2-a € w.
Hence 2 -w = sup,., 2 -a < w. U

Remark 3.18. Right-Monotonicity does not hold: Clearly, 1 < 2 and
sincel w=wand2 - w=w,l-wL2 w.

3.3. Comparisons of Exponentation.
Lemma 3.19. If a and 3 # 0 are ordinals, then o < oP.

Proof. If a = 0 the lemma is trivial. So suppose o > 0.

By induction on 3. Suppose 3 = v + 1, then o’ = (a?) - a > a, by
induction and the corresponding lemma on multiplication.

Suppose 3 is a limit. of = U, <s(@?) = sup,5(a”) > sup, o =
Q.

Lemma 3.20. If a > 1 and 3 are ordinals, then 3 < oP.

Proof. If 3 = 0 the lemma is trivial. So suppose 3 > 0.
By induction on (3. Suppose § =y + 1, then:
o =(@)-a>a-1 (by Left-Monotonicity)
=a’ >~ (by induction).

And of > v implies o® > v+ 1 = 3.
Suppose 3 is a limit. o = U7<ﬂ(oﬂ) = sup,.4(a?) > sup, 5y =
g O

Lemma 3.21. If v is a limit, then for all o > 1: " is a limit.

Proof. v #0,s0 a” > v >0, i.e. ¥ #0. So let x € a”. Show that
r+1<al.

r e a) = Uﬁq(aﬂ), i.e. there is 3 < v such that z € o”. By a
previous lemma, z+ 1< o?. Ifzr +1€a’, 2+ 1< .

So suppose &’ = x4 1. Since v is a limit, 3+1 < 7 and by definition
Pt =(aP)-a,andz+1€ (af)+1<a’+a’ <af-2<a’ aby
Left-Monotonicity (since a > 2). Hence x + 1 € a - 7. O

Lemma 3.22. Suppose v is a limit, « > 1 and § are ordinals and
B <~. Then o® < a”.

Proof. By definition, a7 = Uéq(a‘s). Since 7 is a limit, 5+ 1 < .

By Left-Monotonicity: o’ < (o) -a = o' € {a® | § < v}. Hence
a’ e s, o’ O
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Lemma 3.23. Suppose o« > 1 and (3,7 are ordinals and 3 < . Then
af <.

Proof. By induction over . v = 0 is clear and the previous lemma
is the limit step. So we need to cover the successor step. Suppose
v=0+1. Then 3 < ymeans § < 9. If § =9, apply Left-Monotonicity:
o =a’ < (a®)-a=a’tl=a.

If 3 < 4, apply induction: o’ < a’. Hence (by Left-Monotonicity)
b <l < (o) a=aT=a. O

Theorem 3.24 (Left-Monotonicity of Ordinal Exponentiation). Let
a, 3,7 be ordinals and o > 0. The following are equivalent:

i f<yANa>1.
ii. o < a7.

Proof. The previous lemma shows the forward direction. So assume
o’ <avandnot B<y. fa=1,a’=1=0a"4.

By linearity, v < 3. If v = 8, a” = o’ < 4. If v < f3, by the
forward direction, a” < a” < a"4. 0

Lemma 3.25. Let0<n € w. n* =w.

Proof. w is the smallest limit and n* is a limit by a lemma above. So
w < n¥. Since w is closed under exponentiation, for all & < w, n* € w.
Then n* = sup,, n* < w. U

Remark 3.26. Right-Monotonicity does not hold: Define 3 =241 €
w. Clearly, 2 < 3 and since 2 = w and 3* = w, 2 £ 3*.

4. ASSOCIATIVITY, DISTRIBUTIVITY AND COMMUTATIVITY

Theorem 4.1. +, - and exponentiation are not commutative, i.e. there
are o, 3,7,8,,( such that a + B # B+, v- 9 # 6 -v and ° # (°.

Proof. Let a =1, =w,v=2, 0 =w,e =0, =1.
1 4+ w = w as shown above. w e wU{w} =w+1,s0 a+ [ <+ a.
2w = w as shown above. By Left-Monotonicity, w < w+w = w - 2.
Soy-d<d-n.
0! =0°-0=0, but 1° = 1 by definition. Hence ¢ < (*. O

Theorem 4.2 (Associativity of Ordinal Addition). Let «, 3,7 be or-
dinals. Then (o + 3) +y=a+ (B8 +7).
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Proof. By induction on ~. v = 0 is trivial. Suppose v =9 + 1.

(a+B)+(@0+1)=((a+8)+d)+1
=(a+(+9))+1
=a+((B+0)+1)
=a+(B+(0+1))
=a+(B+7).

by definition
by induction

by definition

)
)
)
)

o~ o~ o~ o~

by definition

Now suppose v is a limit, in particular v > 1. Then 4+ v is a limit,
so a+ (8+7) and (a + §) + v are limits.

(a+B) +v=sup((a+p)+e) (by definition)

e<y

= sup ((a+p0)+¢) (by Left-Monotonicity)
B+e<fB+y

= sup (a+(B+¢)) (by induction)
BHe<f+y

= sup (a+9) (see below)
0< B+

=a+(8+7) (by definition).

Recall Lemma 2.12. Write B = {a+ (f+¢) | B +¢e < 4+ v} and
A={a+6| 6 <pB+~}. Clearly B C A.

Let a4+ 0 € A. Let e = min{¢ | 5+ ¢ > d}. Obviously ¢ < ~.
Assume € = ~, then for each ( < v, 6+ < 6. Then d < B+ v =
sup,., 3+ ¢ < d4. Hence, € <7, ie [+¢e < f+7. By construction,
d < f+e¢. Thus, by Left-Monotonicity, « +§ < a+ (5 +¢) € B. Thus,
the conditions of Lemma 2.12 are satisfied. 0

Theorem 4.3 (Distributivity). Let a, 3,7 be ordinals. Then o - (5 +
V=aB+a-y.

Proof. Note that the theorem is trivial if a = 0, so suppose a > 0.
Proof by induction on 7. v = 0 is trivial. Suppose v =9 + 1.

a-(B+(0+1)=a-((B+0)+1) (by definition)
=a-(+0)+a (by definition)
=a-f+a-d+a (by induction)
=a-f+a-(0+1) (by definition).

Suppose v is a limit. Hence o -y and 3 + v are limits.
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a-(f+7v)= sup a-9 (by definition)

0< B+

= sup (a-(B+¢)) (see below)
B4+e<B+y

=sup(a- (6 +¢)) (by Left-Monotonicity)
e<y

=sup(a-f+a-¢) (by induction)
ey

= sup (a-f+a-¢) (by Left-Monotonicity)
ae<ay

= sup (a- [ +() (see below)
(<ay

=a-B+a-y (by definition).

Recall Lemma 2.12. Write B = {a- (8 +¢) | B+ < B+ 7}
and A ={a-d|d < fB+n~}. Clearly B C A. Let a-J € A. Let
e =min{n | S+ n > d}. Obviously e < . Assume ¢ = =, then for
eachn <, 3+n<d. Then § < S+~ =sup,., B+n<ds. Hence,
£ <, ie [B+e< B+ By construction, § < 8+ e. Thus, by
Left-Monotonicity, a - § < a - (6 +¢) € B. Thus, the conditions of
Lemma 2.12 are satisfied.

Write B={a-f+a-c|a-e<a-y}and A={a-f+(|(<a-v}.
Clearly B C A. Let a-5+( € A. Let ¢ = min{n | a-n > (}. Obviously
e <. Assume € = 7, then for each n < v, a-n < (. Then( < -7y =
sup, ., @ -n < (4. Hence, ¢ < v, ie. a-& < a-v. By construction,
(¢ < a-e. Thus, by Left-Monotonicity, « - 4+ ( < a-f+«a-c € B.
Thus, the conditions of Lemma 2.12 are satisfied. O

Theorem 4.4 (Associativity of Ordinal Multiplication). Let o, 3, be
ordinals. Then (a-B)-v=a-(0-7).

Proof. Note that the theorem is trivial if 3 = 0. So suppose 8 > 0.
Proof by induction on . v = 0 is trivial. Suppose v =6 + 1.

(a-B)-(0+1)=((a-B)-9)+ (a-f) (by definition)
=(a-(8-6))+ (a-P) (by induction)
=a-((6-0)+5) (by Distributivity)
=a-(f-(6+1)) (by definition)
=a-(6-7)
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Now suppose v is a limit, in particular v > 1. Then 3 - v is a limit,
soa-(f-v)and (a- () -~ are limits.

(a-B) -y =sup((a-p)-e) (by definition)

e<y

= sup ((a-f0)-¢) (by Left-Monotonicity)
B-e<By

= sup (a-(0-¢)) (by induction)
Be<fy

= sup («-0) (see below)
0<By

=a-(8-7) (by definition).

Recall Lemma 2.12. Write B = {a - (8-¢) | f-¢ < (-~} and
A={a-0|d<p-~v}. Clearly BC A. If A=, B= A.

Let - € A. Let e =min{¢ | #-( > ¢}. Obviously £ < . Assume
€ =1, then for each ¢ <, 8-¢ <. Then d < -y =sup,., 3-¢ < d;.
Hence, ¢ < v, i.e. - < 3-7. By construction, 6 < (-¢. Thus, by
Left-Monotonicity, o - § < « - (f-¢) € B. Thus, the conditions of
Lemma 2.12 are satisfied. 0

Notation 4.5. As of now, we may omit bracketing ordinal addition
and multiplication.

Remark 4.6. Ordinal exponentiation is not associative, i.e. there are
a, B,y with a%") #£ (aP)7.

Proof. Let « =w, f=1,7 =w. Then 7 =1, ie. a¥) =a! = w.
But o’ = w, hence (a’)? = w*. And w < w* by Left-Monotonicity. [

Theorem 4.7. Let o, 3,7 be ordinals. Then o7 = o’ - a”.

Proof. Recall that 8+~ = 0 iff § = v = 0, so the theorem holds for
a = 0. Also note that the theorem is trivial for o = 1, so suppose
a > 1. Proof by induction on . v = 0 is trivial. Suppose v =46 + 1.
oot — of 10 g (by definition)
=a’ - (by induction)

=a’. "M (by definition).

Q
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Suppose 7 is a limit. Then o” and a”*7 are limits.

o’ = sup o (by definition)

0< B+

= sup o’f* (see below)
B+e<p+y

= sup ¢ (by Left-Monotonicity)
ey

= sup(a” - o) (by induction)
e<y

= sup (o’ - o) (by Left-Monotonicity)
as<a

= sup (o’ - () (see below)
(<aY

=a’ +a" (by definition).

Recall Lemma 2.12. Write B = {a#*¢ | B+¢ < f+~} and A = {a’ |
§ < B+~} Clearly BC A. Let o’ € A. Let ¢ = min{n | 3 +n > 6}.
Obviously € < . Assume € = ~, then for each n <, 3+ 1 < . Then
0 <fB+vy=sup,.,B+n <04 Hence, e <7, ie B+e<f+7. By
construction, § < 3+ . Thus, by Left-Monotonicity, o’ < o? € B.
Thus, the conditions of Lemma 2.12 are satisfied.

Write B = {a” -af | o < o’} and A = {a? - ( | ¢ < a”}. Clearly
B C A Leta?-¢ € A Let e = min{n | " > ¢}. Obviously
e < . Assume € = v, then for each n < v, " < (. Then ( < o =
sup, ., @’ < (4. Hence, € < 7, i.e. a® < a?. By construction, ¢ < .
Thus, by Left-Monotonicity, o -¢ < a®+a° € B. Thus, the conditions
of Lemma 2.12 are satisfied. U

5. THE CANTOR NORMAL FORM
Lemma 5.1. Ifa < 3 and n,m € w\ {0}, w®-n < w®-m.

Proof. a+1 < 3, so w®! < w” by Left-Monotonicity (of exponentia-
tion). Hence (by Left-Monotonicity of multiplication), w®-n < w*-w =
Wt < WP < Wl . m. O

Lemma 5.2. If ag > agy > ... > «,, and mq,...,m, € w, then
W > D i W

Proof. If any m; = 0 it may just be omitted from the sum. So suppose
all m; > 0. n =0 and n = 1 are the trivial cases. Consider n = 2:

w* - my + w*? - me < W - my + w* - my by the lemma above
and Left-Monotonicity of addition. Then again by the previous lemma
W - my - 2 < weo.
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Continue via induction: Suppose the lemma holds for n. Then con-
sider the sequence az, ..., a,. It follows that » ,_, ., ; w* -m; < w.
By the n = 2 case, w™ > w* - m; + w* and by Left-Monotonicity of
addition, w® - my +w™ > . w* - my. O

Theorem 5.3 (Cantor Normal Form (CNF)). For every ordinal «,
there is a unique k € w and unique tuples (my,...,my) € (w\ {0})%,
(v, ..., ) of ordinals with ag > ... > ay, such that:

a=w -my+...+w% -my

Proof. Fxistence by induction on «a: If a = 0, then £ = 0. Suppose
that every f < a has a CNF. Let & = sup{y | w” < a} and let
m = sup{m € w | w*-m < a}. Note that w® < a: If not, then o € w?.
Then there is v, w? < « with o € . But since w*™ > w® > q,
vy<a+l ie yv<as.

Also note that 7 € w: If not, then m = w, hence: a < W' =
W w = sup,, w* n<af.

By construction, w® - 1 < a, so there is ¢ < o with o = w® - + €.
Show that € < a: Suppose not, then € > a, hence € > w®, so there is
( <ewithe =w+(, ie. a=w m+w+ (. By left-distributivity,
a=w* (m+1)+¢>w* (m+1), contradicting the choice of .

Thus, by induction, ¢ has a CNF Y, _, w” - n;. Note that ) < &: If
not, By > @, i.e. by the choice of &, W% > «, s0 € > w® > a4.

Now state the CNF of a: If Gg < aset k=141, ag = &, mg =m
and o; = 61‘_1, m; = N;—1 for 1 S ) S k. And if ﬁo = & set k = l,
mo=mng+m, ay =& and o; = 3;, m; =n,; for 1 <i <k.

Uniqueness: Suppose not and let o be the minimal counterexample.
Let oo = w® -my+ ... +w* -m,, = w -ng+...+w’ -n,. Obviously
a > 0, i.e. the sums are not empty.

Show g = (By: Suppose not, wlog assume oy > (3. Consider the
previous lemma. Then o > w® -mg > w™® -ng + ... + W - n, = as.

Then show my = ng: Suppose not, wlog assume mg < ng. Then,
again by the previous lemma, w® > > _._ w® -m;. So, by Left-
Monotonicity of addition, o < w® - mgy +w, i.e. a < w™ - (mo+1) <
w -ng < ajf.

So w® -mg = w -ng, so by Left-Monotonicity, w™ -my + ... +w™ -
My = W 0y + ...+ w’ -n,. These terms are strictly smaller than o
by the previous lemma. By minimality of oo, m = n, and the a’s, (’s,
m’s and n’s are equal. Thus « has a unique CNF'/. U



