Infinite graph theory II: exercises on 12/05/2022

- 1. Show that for every locally finite G the cycle space C is a closed subspace of the edge space $\mathcal{E} = \mathbb{F}_2^E$ where \mathbb{F}_2 carries the discrete topology and \mathcal{E} the product topology.
- 2. Prove that the characteristic vectors of cuts together with the null vector is a subspace of \mathcal{E} .
- 3. Show that the cut space \mathcal{B} can be generated via thin sums by the cuts of the form $\delta(v)$.
- 4. Let $k \ge 2$ be fixed, $I = \{0, \ldots, 2k 1\}$, $I_e = \{i \in I : i \text{ is even }\}$, $I_o = I \setminus I_e$. Denote by I^* the set of finite sequences from I. Let the vertex set V of the digraph is the union of the disjoint sets $\{s_{\mu} : \mu \in I^*\}$ and $\{t_{\mu} : \mu \in I^*\}$. The edge set E of the digraph consists of the following edges. For all $\mu \in I^*$ there are k edges in both directions between the two elements of the following pairs: $\{s_{\mu}, t_{\mu 1}\}$, $\{s_{\mu i}, t_{\mu (i+2)}\}$ $(i = 0, \ldots, 2k - 3)$, $\{s_{\mu (2k-2)}, t_{\mu}\}$. Simple directed edges are $(s_{\mu}, t_{\mu 0}), (t_{\mu i}, s_{\mu (i+1)})_{i \in I_e}, (s_{\mu i}, t_{\mu (i+1)})_{i \in I_e \setminus \{2k-1\}}, (s_{\mu (2k-1)}, t_{\mu})$ for all $\mu \in I^*$. Finally D := (V, E) (see figure 1). Prove that D is k-edge-connected and every st-path shares some edge with every ts-path in D. (10 points)

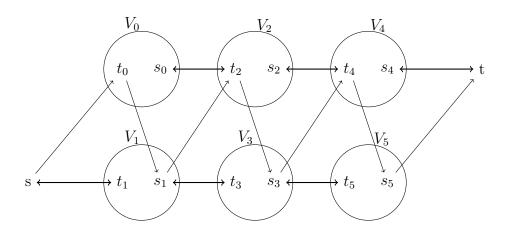


Figure 1: The digraph D in the case k = 3. Thick, two-headed arrows stand for k parallel edges in both directions. The (just partially drawn) $D[V_i]$'s are isomorphic to the whole D.