Infinite graph theory II: exercises on 28/04/2022

1. Let $G=(V, E)$ be a locally finite connected graph and suppose that $F \subseteq E$ contains an edge from each finite cut of G and minimal with respect to this property. Prove that F does not contain any circuits (not even an infinite one).

Hint: The Jumping Arc Lemma helps
2. Let $G=(V, E)$ be a locally finite connected graph and let $A \subseteq|G|$ be an arc that contains uncountably many ends. Let < be the ordering on $A \cap V$ inherited from $[0,1]$ through a fixed homeomorphism between $[0,1]$ and A. Find a subset of $A \cap V$ which is dense in itself with respect to the restriction of $<$.
3. Let $D=(V, E)$ be a digraph and let $X, Y \subseteq V$. Suppose that \mathcal{P} and \mathcal{Q} are systems of disjoint $X Y$-paths in D. Show that there is a system \mathcal{R} of disjoint $X Y$-paths such that $V(\mathcal{R}) \cap X \supseteq V(\mathcal{P}) \cap X$ and $V(\mathcal{R}) \cap Y \supseteq V(\mathcal{Q}) \cap Y$.

Hint: The paths in \mathcal{R} can be chosen in such a way that each $R \in \mathcal{R}$ consists of an initial segment of a path in \mathcal{P} and a terminal segment of a path in \mathcal{Q}. Build a bipartite multigraph $G=(\mathcal{P}, \mathcal{Q}, F)$ where F contains one edge between $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$ for each common vertex of P and Q. Use the Gale-Shapely theorem with suitable preferences to obtain a stable matching and concatenate the segments of the paths accordingly.
4. Consider the context of the Gale-Shapley theorem and let I_{0} and I_{1} be stable matchings. Every woman picks the man among her partners in I_{0} and in I_{1} that she likes better (and picks nobody if she does not have a partner in any of these matchings). Is it true that this always defines a stable matching?

