## Infinite graph theory II: exercises on 21/04/2022

1. Show that if graph $G$ is connected and each $v \in V(G)$ has countable degree, then $V(G)$ is countable.
2. Assume that $G$ is a locally finite graph, $U \subseteq V(G)$ and $\varepsilon \in \Omega(G)$. Prove that $G$ has a comb with its spine in $\varepsilon$ and teeth in $U$ if and only if $\varepsilon \in \bar{U}$.
3. Let $G$ be a locally finite graph that admits a normal spanning tree $T$ rooted at $r$. Prove that every topological end of $G$ has a unique ray in $T$ that starts in $r$.
4. Does every locally finite 2 -connected infinite graph contain an infinite circuit? How about infinite bonds?
5. Show that in every locally finite graph every infinite circuit meets some infinite bond in a single edge.
