Infinite graph theory II: exercises on 14/07/2022

Let κ be an uncountable regular cardinal.

- 1. Show that the intersection of a stationary set and a club in κ is stationary.
- 2. Prove that $\kappa \setminus \alpha$ is a club for every $\alpha < \kappa$ and hence bounded sets cannot be stationary.
- 3. Let S be a stationary set in κ . Show that if we partition S into fewer than κ pieces then at least one of them must be stationary.
- 4. Show that if S is stationary in κ , then either $\{\alpha \in S : cf(\alpha) < \alpha\}$ or the set of the uncountable regular cardinals in S is also stationary.
- 5. Prove that for any function $f : \kappa \to \kappa$ the set $\{\alpha < \kappa : (\forall \beta < \alpha)(f(\beta) < \alpha)\}$ is a club.

Theorem (Solovay). Every stationary set in κ can be partitioned into κ many stationary sets.

Instructions for the proof. Let a stationary $S \subseteq \kappa$ be given.

- (a) Suppose first that $S' := \{ \alpha \in S : \mathsf{cf}(\alpha) < \alpha \}$ is stationary. Apply Fodor's lemma with S' and $\alpha \mapsto \mathsf{cf}(\alpha)$ to obtain a stationary S'' and $\lambda < \kappa$ such that $f(\alpha) = \lambda$ for $\alpha' \in S''$. Then $S'' \subseteq S^{\kappa}_{\lambda}$ and we are done because this is the special case we have already proved at the lecture.
- (b) Argue that we can assume that S consists of uncountable regular cardinals.
- (c) Show that

 $S' := \{ \alpha \in S : S \cap \alpha \text{ is not stationary in } \alpha \}$

is stationary in κ . Hint: for a given club C take $\alpha := \min(\operatorname{acc}(C) \cap S)$ and argue that $\alpha \cap \operatorname{acc}(C)$ is a club in α that $S \cap \alpha$ avoids.

(d) For $\alpha \in S'$, let $\langle a_{\xi}^{\alpha} : \xi < \alpha \rangle$ be the increasing enumeration of a club in α that avoids $S' \cap \alpha$. Find an $\eta < \kappa$ such that for every $\beta < \kappa$:

$$S_{\beta} := \{ \alpha \in S' : a_{\eta}^{\alpha} > \beta \}$$

is stationary in κ .

Hint: suppose for a contradiction the negation of the statement. Take the diagonal intersection C of the clubs C_{η} obtained from the indirect assumption. Trim C to a smaller club D by applying exercise 5 with the function $\eta \mapsto \beta_{\eta}$ (where β_{η} is a bound coming from the indirect assumption). Pick $\gamma, \alpha \in D \cap S'$ with $\gamma < \alpha$ and show $a_{\gamma}^{\alpha} = \gamma$ which is a contradiction since $a_{\gamma}^{\alpha} \notin S'$ by definition.

(e) Cut S' into κ many stationary sets by using Fodor's lemma iteratively with the function $\alpha \mapsto a_{\eta}^{\alpha}$.