Infinite graph theory II: exercises on 14/07/2022

Let κ be an uncountable regular cardinal.

1. Show that the intersection of a stationary set and a club in κ is stationary.
2. Prove that $\kappa \backslash \alpha$ is a club for every $\alpha<\kappa$ and hence bounded sets cannot be stationary.
3. Let S be a stationary set in κ. Show that if we partition S into fewer than κ pieces then at least one of them must be stationary.
4. Show that if S is stationary in κ, then either $\{\alpha \in S: \operatorname{cf}(\alpha)<\alpha\}$ or the set of the uncountable regular cardinals in S is also stationary.
5. Prove that for any function $f: \kappa \rightarrow \kappa$ the set $\{\alpha<\kappa:(\forall \beta<\alpha)(f(\beta)<\alpha)\}$ is a club.

Theorem (Solovay). Every stationary set in κ can be partitioned into κ many stationary sets.

Instructions for the proof. Let a stationary $S \subseteq \kappa$ be given.
(a) Suppose first that $S^{\prime}:=\{\alpha \in S: \operatorname{cf}(\alpha)<\alpha\}$ is stationary. Apply Fodor's lemma with S^{\prime} and $\alpha \mapsto \operatorname{cf}(\alpha)$ to obtain a stationary $S^{\prime \prime}$ and $\lambda<\kappa$ such that $f(\alpha)=\lambda$ for $\alpha^{\prime} \in S^{\prime \prime}$. Then $S^{\prime \prime} \subseteq S_{\lambda}^{\kappa}$ and we are done because this is the special case we have already proved at the lecture.
(b) Argue that we can assume that S consists of uncountable regular cardinals.
(c) Show that

$$
S^{\prime}:=\{\alpha \in S: S \cap \alpha \text { is not stationary in } \alpha\}
$$

is stationary in κ. Hint: for a given club C take $\alpha:=\min (\operatorname{acc}(C) \cap S)$ and argue that $\alpha \cap \operatorname{acc}(C)$ is a club in α that $S \cap \alpha$ avoids.
(d) For $\alpha \in S^{\prime}$, let $\left\langle a_{\xi}^{\alpha}: \xi<\alpha\right\rangle$ be the increasing enumeration of a club in α that avoids $S^{\prime} \cap \alpha$. Find an $\eta<\kappa$ such that for every $\beta<\kappa$:

$$
S_{\beta}:=\left\{\alpha \in S^{\prime}: a_{\eta}^{\alpha}>\beta\right\}
$$

is stationary in κ.
Hint: suppose for a contradiction the negation of the statement. Take the diagonal intersection C of the clubs C_{η} obtained from the indirect assumption. Trim C to a smaller club D by applying exercise 5 with the function $\eta \mapsto \beta_{\eta}$ (where β_{η} is a bound coming from the indirect assumption). Pick $\gamma, \alpha \in D \cap S^{\prime}$ with $\gamma<\alpha$ and show $a_{\gamma}^{\alpha}=\gamma$ which is a contradiction since $a_{\gamma}^{\alpha} \notin S^{\prime}$ by definition.
(e) Cut S^{\prime} into κ many stationary sets by using Fodor's lemma iteratively with the function $\alpha \mapsto a_{\eta}^{\alpha}$.

