Infinite graph theory II: exercises on 30/06/2022

- 1. Let M be an elementary submodel. Show that for every $x \in \mathbb{R}^2 \setminus M$ there is at most one $y \in \mathbb{R}^2 \cap M$ such that $d(x, y) \in \mathbb{Q}$ where d(x, y) denotes the distance between xand y.
- 2. Let G = (V, E) be the rational distance graph on the plane, i.e. $V = \mathbb{R}^2$ and $E = \{\{u, v\} \in [V]^2 : d(u, v) \in \mathbb{Q}\}$. Prove $\chi(G) \leq \aleph_0$ by showing that K_{2,ω_1} is not a subgraph of G (we have seen that uncountably chromatic graphs must contain K_{n,ω_1} as a subgraph for every $n < \omega$).
- 3. Show that for every $f : \omega_1 \to [\omega_1]^{\omega}$ one can find an $\alpha < \omega_1$ such that $f(\beta) \subseteq \alpha$ for every $\beta < \alpha$.¹(10p)

Hint: try to get α as a limit of an increasing sequence $(\alpha_n)_{n < \omega}$ where α_{n+1} "fixes the failure" of α_n .

4. Prove that if c is a colouring of the edges of K_{ω_1} with the colours ω_1 in such a way that every uncountable induced subgraph contains all the colours, then there is a countably infinite monochromatic induced subgraph in each colour. (10p)

¹Fo a set X and cardinal κ we denote the set of the κ -sized subsets of X by $[X]^{\kappa}$.