Infinite graph theory II: exercises on 30/06/2022

1. Let M be an elementary submodel. Show that for every $x \in \mathbb{R}^{2} \backslash M$ there is at most one $y \in \mathbb{R}^{2} \cap M$ such that $d(x, y) \in \mathbb{Q}$ where $d(x, y)$ denotes the distance between x and y.
2. Let $G=(V, E)$ be the rational distance graph on the plane, i.e. $V=\mathbb{R}^{2}$ and $E=\left\{\{u, v\} \in[V]^{2}: \quad d(u, v) \in \mathbb{Q}\right\}$. Prove $\chi(G) \leq \aleph_{0}$ by showing that $K_{2, \omega_{1}}$ is not a subgraph of G (we have seen that uncountably chromatic graphs must contain $K_{n, \omega_{1}}$ as a subgraph for every $n<\omega$).
3. Show that for every $f: \omega_{1} \rightarrow\left[\omega_{1}\right]^{\omega}$ one can find an $\alpha<\omega_{1}$ such that $f(\beta) \subseteq \alpha$ for every $\beta<\alpha .{ }^{1}(10 \mathrm{p})$

Hint: try to get α as a limit of an increasing sequence $\left(\alpha_{n}\right)_{n<\omega}$ where α_{n+1} "fixes the failure" of α_{n}.
4. Prove that if c is a colouring of the edges of $K_{\omega_{1}}$ with the colours ω_{1} in such a way that every uncountable induced subgraph contains all the colours, then there is a countably infinite monochromatic induced subgraph in each colour. (10p)

[^0]
[^0]: ${ }^{1}$ Fo a set X and cardinal κ we denote the set of the κ-sized subsets of X by $[X]^{\kappa}$.

