Infinite graph theory II: exercises on 07/04/2022

1. Assume that $D=(V, E)$ is a (possibly infinite) digraph, $a \neq b \in V$ and \mathcal{P} is a system of edge-disjoint $a b$-paths. Prove that either one can choose exactly one edge from each $P \in \mathcal{P}$ in such a way that the resulting edge set is an $a b$-cut (i.e. meets every $a b$-path) or there exists another system \mathcal{Q} of edge-disjoint $a b$-paths such that $\delta_{\mathcal{Q}}^{+}(a) \supset \delta_{\mathcal{P}}^{+}(a)$ and $\delta_{\mathcal{Q}}^{-}(b) \supset \delta_{\mathcal{P}}^{-}(b)$ with $\left|\delta_{\mathcal{Q}}^{+}(a) \backslash \delta_{\mathcal{P}}^{+}(a)\right|=\left|\delta_{\mathcal{Q}}^{-}(b) \backslash \delta_{\mathcal{P}}^{-}(b)\right|=1$. (Here $\delta_{\mathcal{Q}}^{+}(a)$ stands for the set of the outgoing edges of a in the digraph consisting of the paths in \mathcal{Q} and $\delta_{\mathcal{Q}}^{-}(b)$ is defined similarly but with ingoing edges.)

Hint: Consider the digraph D^{\prime} that we obtain from D by reversing the edges in $E(\mathcal{P})$. Show that if D^{\prime} admits an $a b$-path, then the second possibility occurs and otherwise the first one.
2. Formulate and prove a version of the statement from the previous exercise in which there are vertex-disjoint $A B$-paths for some $A, B \subseteq V$.

Hint: Reduce it to the edge version by splitting vertices into edges.
3. State and prove the undirected versions of the statements above.

