Game Theory, exercise sheet 7

1. (4 points) Consider the following game:

	А	В	С
А	(0,0)	(6, 2)	(-1, -1)
В	(2, 6)	(0, 0)	(3, 9)
\mathbf{C}	(-1, -1)	(9,3)	(0,0)

Find two mixed Nash equilibria, one supported on $\{A, B\}$, the other supported on $\{B, C\}$. Show that they are both ESS, but the $\{A, B\}$ equilibrium is not stable when invaded by an arbitrarily small population composed of half B's and half C's.

2. (4 points) Take a two-person general-sum game, and use strong iterated elimination of strategies. If at the end of the process, only one outcome remains, is it true that this outcome is always Pareto-optimal?

3. (4 points) Argue that in a symmetric game, if $a_{ii} > b_{ij}$ (= a_{ji}) for all $j \neq i$, then pure strategy *i* is an evolutionarily stable strategy.

4. (3+3 points) Find all Nash equilibria and determine which of the symmetric equilibria are evolutionarily stable in the following games:

	A	В		A	В
A	(4, 4)	(2,5)	A	(4,4)	(3, 2)
B	(5,2)	(3,3)	В	(2,3)	(5, 5)

5. (3+3 points) Occasionally, two parties resolve a dispute (pick a winner) by playing a variant of Rock-Paper-Scissors. In this version, the parties are penalized if there is a delay before a winner is declared; a delay occurs when both players choose the same strategy. The resulting payoff matrix is the following:

	Rock	Paper	Scissors
Rock	(-1, -1)	(0, 1)	(1, 0)
Paper	(1,0)	(-1, -1)	(0, 1)
Scissors	(0,1)	(1, 0)	(-1, -1)

a) Show that this game has a unique Nash equilibrium that is fully mixed, and results in expected payoffs of 0 to both players.

b) Show that the following probability distribution is a correlated equilibrium in which the players obtain expected payoffs of 1/2:

	Rock	Paper	Scissors
Rock	0	1/6	1/6
Paper	1/6	0	1/6
Scissors	1/6	1/6	0

6. (3+3 points) Definition: n + 1 points $v_0, v_1, \ldots, v_n \in \mathbb{R}^n$ are affinely independent if the *n* vectors $v_i - v_0$, for $1 \le i \le n$, are linearly independent.

a) Show that n+1 points v₀, v₁,..., v_nℝ^d are affinely independent if and only if for every non-zero vector (α₀,..., α_n) for which ∑_{0≤i≤n} α_i = 0, it must be that ∑_{0≤i≤n} α_iv_i ≠ 0.
b) Show that a k-face of an n-simplex is a k-simplex.