
Discrete Mathematics Exercises
2019 Summer semester

1 Exercise sheet 1

1. Find relations R,S on some set X such that R ◦ S 6= S ◦R.

2. Let us imagine we intend to buy a refrigerator. We simplify the complicated real situation by a
mathematical abstraction, and we suppose that we only look at three numerical parameters of refrigerators:
their cost, electricity consumption, and the volume of the inner space. If we consider two types of refrigerators,
and if the first type is more expensive, consumes more power, and a smaller amount of food fits into it, then
the second type can be considered a better one?a large majority of buyers of refrigerators would agree with
that.
The relation "to be clearly worse" (denote it by �) in this sense is the following: on the set of triples
(c, p, v) of real numbers (c stands for cost, p for power consumption, and v for volume), defined as follows:
(c1, p1, v1) � (c2, p2, v2) if and only if c1 ≥ c2, p1 ≥ p2, and v1 ≤ v2.
Show that this � is a partial ordering.

3. Are the following relations R over set X equivalence relations?

1. X = R2, ((x1, y1), (x2, y2)) ∈ R⇔ x21 + y21 = x22 + y22.

2. X = R2, ((x1, y1), (x2, y2)) ∈ R⇔ x1 · y2 = x2 · y1.

3. X = R2 \ {(0, 0)}, ((x1, y1), (x2, y2)) ∈ R⇔ x1 · y2 = x2 · y1.

4. Let R and S be arbitrary equivalences on a set X. Decide which of the following relations are necessarily
also equivalences (if yes, prove; if not, give a counterexample).

1. R ∩ S

2. R ∪ S

3. R \ S

4. R ◦ S

5. The following (false) proof tries to prove that every symmetric and transitive relation is also reflexive:
Let R be symmetric and transitive relation on set X, then for every x, y ∈ X with (x, y) ∈ R since the
symmetry (y, x) ∈ R and using transitivity, (x, y) ∈ R and (y, x) ∈ R therefore (x, x) ∈ R. Thus the relation
R is an equivalence relation.

Give a counterexample for this statement, and show where is the mistake.
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6. (1 point each)

1. Show that a largest element is always maximal.

2. Find an example of a poset with a maximal element but no largest element.



3. Find a poset having no smallest element and no minimal element either, but possessing a largest
element.

7. (2 points)
Consider the set {1, 2, . . . , n} ordered by the divisibility relation. What is the maximum possible number of
elements of a set X ⊆ {1, 2, . . . , n} that is ordered linearly by the relation? (such a set X is called a chain)

8. (3 points)
Prove that a relation R on a set X satisfies R ∩R−1 = ∆X if and only if R is reflexive and antisymmetric.

9. (3 points)
Let X,Y, Z be finite sets, let R ⊆ X ×Y and S ⊆ Y ×Z be relations, and let AR and AS be their adjacency
matrices, respectively. (AR has |X| rows and |Y | coloumns and aRij = 1 if xiRyj otherwise 0.) Their matrix
product is ARAS . Discover and describe the connection of the composed relation R◦S to the matrix product
ARAS .

10. (for handing in, 8 points)
Let R be a relation on a set X such that there is no finite sequence of elements x1, x2, . . . xk of X satisfying
x1Rx2, x2Rx3, . . . , xk−1Rxk, xkRx1 (we say that such an R is acyclic). Prove that there exists an ordering
� on X such that R ⊆�. You may assume that X is finite if this helps.
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For problems 1-4, each subproblem is worth 1 point.

11. a) There is a building with n floors (counting the ground floor as well).
How many ways can we paint the levels to red, yellow or blue?
b) What happens if two consecutive levels cannot have the same color?
Solution: a, 3n (independent choice for every floor)
b, 3 · 2n−1 starting from the ground floor, going up, we can choose from 3 colors for the ground floor, and
from 2 colors for every floor above it, since the color of the lower neighbor is forbidden.

12. a) How many ways can a lion, a pengiun, a tiger and a polar bear stand in a row?
b) What if we have one more lion?
c) What if we have yet one more lion?
d) We have 4 lions, 2 tigers and 3 polar bears. (We do not distinguish between animals of the same species.)
Solution: a) 4!; b) 5!/2: differentiating between the lions, it would be 5!, in the end we divide by two;
c) 6!/3! similarly, we counted each ordering 3! times; d) 9!

4!·2!·3! permutation with repetition.

13. On a 8× 8 chessboard, how many ways can we place
a) one black and one white stones; b) two white stones;
c) one black, one white, and one green stone; d) three white stones;
e) three black and four white stones?
Solution: a) 64 · 63 (independent decisions); b) 64 · 63/2 (divide the solution of a by 2); c) 64 · 63 · 62;
d) 64·63·62

3! ; e) 64·····58
3!·4! .

14. How many 8-digit numbers are there? How many 8-digit number are there with the following property:
a) the consecutive digits are different.
b) it does not contain the digit 5.
c) it contains the digit 5.
d) there are two digits that are the same (there may be more).
e) there are two consecutive digits that are the same (there may be more).
f) there are exactly two digits that are the same.



g) there are exactly two consecutive digits that are the same.
Solution: There are 9 · 107 eight-digit numbers, the first digit cannot be zero.
a) 98; b) 8 · 97; c) all minus bad ones: 9 · 107 − 8 · 97;
d) 9 · 107 − 9 · 9 · 8 · 7 · · · · · 3;
e) 9 · 107 − 98.
f) We can also solve it by case analysis. A tricky proof: Select the place of the two digits that are the same.
Then from left to right write the digits, when we reach the first selected place write the same digit to the
second place as well. The solution is

(
8
2

)
· 9 · 9 · 8 · 7 · . . . · 4.

g) First version: the number has all different digits, except for two, which are consecutive. Take all possible
7-digit numbers with all differetn digits, and double one of the digits: 9 · 9 · 8 · 7 · 6 · 5 · 4 · 7
Second version: Non-consecutive digits are allowed to be the same. Take a 7-digit numbers where the
consecutive digits are different (similar to subproblem a)) then double one digit. This gives 7 · 97 as a
solution.

15. (2 points) Alice goes the florist, and would like to buy 7 flowers. The shop has roses, tulips and
carnations. How many ways can she buy 7 flowers? (We do not distinguish between flowers of the same
type.)
Solution: This is the same as the chocolate problem, or the equation problem. Place the 7 flowers and 2
separators (anywhere, we don’t have to buy ≥ 1 from each) this gives us

(
9
2

)
= 9·8

2 = 36 variations. With
n = 3, k = 7 this is

(
n+k−1

k

)
=
(
9
7

)
=
(
9
2

)
= 36.

16. (2 points) George is in Manhattan, and he wants to walk from the corner of 8th Avenue and 42nd Street
to the corner of 11th Avenue and 57th Street. He wants to walk one of the shortest possible paths. How
many ways can he do it? (The streets and avenues form a grid.)
Solution: (Looking at the map, with approximate directions) This walk involves 3 corners (Avenues) going
west, and 15 corners (Streets) going north. In total he takes 18 “steps” and 3 of them is going west. This
gives

(
18
3

)
= 18·17·16

3! = 816 possibilities.

17. (3 points) How many ways can n boys and n girls stand in a line, if two boys cannot stand next to
each other, and two girls cannot stand next to each other?
Solution: 2 · (n!)2, they must stand in a boy-girl-boy-girl alternating order. First we decide if a boy or a girl
starts the row. Among the boys there are n! possibilities, among the girls, also n! .

18. (5 points) 13 green, 15 gray, and 17 red chameleons live in Madagascar. They always meet in pairs.
They are easily frightened, if two chameleons of different colors meet, they get so frightened that they both
switch to the third color. Is it possible, that after some time, all of them acquire the same color?
Solution: Look at the number of chameleons of each color modulo 3. They represent 3 different residue
classes. When two chamelaeons meet, two numbers decrease by one, one increases by 2, so modulo 3 they
all change the same way. In other words, the difference between two color classes modulo 3 does not change.
Therefore, we cannot reach 0, 0, 45 at any time.

19. For handing in.
a) (4 points) How many ways can we place 8 rooks on a 8 × 8 chessboard, such that no pair of them can
capture each other? (A rook can capture an another rook if they are in the same row or in the same coloumn.)
b) (6 points) What if they are not allowed to capture each other and the arrangement of the pieces should
be centrally symmetric to the center of the chessboard?
Solution: a, Every row and every coloumn has exactly one rook. Putting down the rooks row by row we
have 8! possibilities.
b, By symmetry, the place of the rook in the first row determines the place of the rook on the last row. Then
we can place the second rook in 6 places. The total number of possibilities is 8 · 6 · 4 · 2.
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For problems 1-2, each subproblem is worth 1 point, except for 1/e.

20. In a German lottery, players are required to choose six main numbers between 1 and 49 plus an
additional number, known as the Superzahl, between 0 and 9. To win the jackpot, a player must match all
seven numbers, but prizes are available for matching as few as two main numbers plus the Superzahl.
a) What is the probability of getting all seven numbers right?
b) What is the probability of getting 6 numbers right, but not the Superzahl?
c) What is the probability of getting the 6 numbers right? (We don’t care about the Superzahl)
d) What is the probability getting exactly 5 numbers of the main 6 right? (We don’t care about the
Superzahl)
e) (2 p) What is the probability getting at least 3 numbers of the main 6 right, and getting the Superzahl
wrong?
Solution:

a,
1(
49
6

) · 1

10
and

(
49

6

)
= 13983816, so the probability is

1

139838160

b,
1(
49
6

) · 9

10
c,

1(
49
6

)
d,

(
6
5

)(
43
1

)(
49
6

)
e,

(
1(
49
6

) +

(
6
5

)(
43
1

)(
49
6

) +

(
6
4

)(
43
2

)(
49
6

) +

(
6
3

)(
43
3

)(
49
6

) )
· 9

10

21. There are 10 red, 20 yellow and 40 green balls in a box. With closed eyes, at least how many balls
should we pick, to surely have
a) one yellow ball? b) three balls with different colors?
c) three balls of the same color? d) 15 balls of the same color?
e) two green balls that were drawn right after each other?
Solution: a) 10 + 40 + 1 = 51; b) 40 + 20 + 1 = 61; c) 2 + 2 + 2 + 1 = 7; d) 10 + 14 + 14 + 1 = 39;
e) 2 · 10 + 2 · 20 + 2 = 62 (10 green-red, 20 green-yellow and two more).

22. (1 point) Show that (
n

k + 1

)
=
n− k
k + 1

(
n

k

)
Solution:

n− k
k + 1

(
n

k

)
=
n− k
k + 1

· n!

k!(n− k)!
=

n!

(k + 1)!(n− k − 1)!
=

(
n

k + 1

)
23. (4 points) Prove the following equality(

n

0

)2

+

(
n

1

)2

+

(
n

2

)2

+ · · ·+
(
n

n

)2

=

(
2n

n

)
Solution: Let us choose n elements out of {1, 2, 3, . . . 2n}. If we chose k elements from the fist half, then we
have to choose n− k elements of the second half.(

2n

n

)
=

n∑
k=0

(
n

k

)(
n

n− k

)
=

n∑
k=0

(
n

k

)2



24. (2 points) How many ways can we cover a 2× n “chessboard” with 1× 2 dominoes?
Solution: If n = 1: 1 way, if n = 2: two ways, if n = 3: three ways. We will show that the number of
possibilities is Fn+1. Use induction. Take a 2× n “chessboard”. If the last domino is vertical, we should fill
the remaining 2×n− 1 place with dominoes. We know from the induction hypothesis that this can be done
Fn ways. If the last domino is horizontal, actually there has to be two horizontal dominoes. The remaining
2× n− 2 part can be filled Fn−1 ways. In total, we can fill it Fn + Fn−1 = Fn+1 ways.

25. (3 points) Show that the product of n consecutive positive integers is always divisible by n!.

Solution: m(m−1)···(m−n+1)
n! =

(
m
n

)
, which is an integer.

26. (2 points) How many ways can we choose three different numbers from the set {1, 2, 3, . . . 100} in a
way that the sum of these three numbers is divisible by 3?
Solution: Either the three numbers have all different residues modulo 3, or all the same. In {1, 2, 3, . . . 100}
there are 33 numbers having residue 0, 34 numbers have residue 1, and 33 numbers have residue 2. The total
number of possibilities is

(
33
3

)
+
(
34
3

)
+
(
33
3

)
+ 33 · 34 · 33.

27. For handing in. (7 points)
Prove that for the Fibonacci numbers F0 + F1 + F2 + · · ·+ Fn = Fn+2 − 1 for every n ≥ 0.
Solution: Use induction. For n = 0, the statement is true, since 0 = F0 = F2 − 1 = 1− 1
Induction hypothesis: F0 + F1 + F2 + · · ·+ Fn = Fn+2 − 1
Then, for n+ 1, F0 + F1 + F2 + · · ·+ Fn + Fn+1 = Fn+1 + Fn+2 − 1 = Fn+3 − 1. Done.
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28. (3 points) The inclusion-exclusion principle states the following: For finite sets A1, A2 . . . An:∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ =
n∑
i=1

|Ai| −
∑

1≤i<j≤n
|Ai ∩Aj |+

∑
1≤i<j<k≤n

|Ai ∩Aj ∩Ak| − . . . (−1)n−1|A1 ∩A1 ∩ . . . An|

Prove this statement with induction. (So, suppose we already know that the statement is true for n− 1 sets,
and using this, prove for n sets.)

29. (3 points) Express the following sum in a closed form.(
n

0

)
+

(
n

1

)
2 +

(
n

2

)
4 + · · ·+

(
n

n

)
2n

Solution: Use the binomial theorem:
∑n

k=0

(
n
k

)
· 2k =

∑n
k=0

(
n
k

)
· 2k · 1n−k = (2 + 1)n = 3n

30. (2 points) Prove that Fn and Fn−1 are relative primes. (Fn is the nth Fibonacci number.)
Solution: Suppose Fn and Fn−1 are not relative primes. This means there is a p > 1, p|Fn and p|Fn−1 .
Since Fn−2 = Fn−Fn−1, p|Fn−2. Therefore Fn−1 and Fn−2 are not relative primes either. After some steps,
we reach that F1 = 1 and F2 = 1 are not relative primes. But they are. Contradiction.

31. (2 points) There are 350 farmers in a large region. 260 of them farm beetroot, 100 farm potatoes, 70
farm radish, 40 farm beetroot and radish, 40 farm potatoes and radish, and 30 farm beetroot and potatoes.
All of them farm something out of these three vegetables.
Determine the number of farmers that farm beetroot, potatoes, and radish.
Solution: Let x be the number of people who farm all three. Use the inclusion exclusion prociple.∣∣∣∣∣

3⋃
i=1

Ai

∣∣∣∣∣ =
3∑
i=1

|Ai| −
∑

1≤i<j≤3
|Ai ∩Aj |+ |A1 ∩A2 ∩A2|



350 = 260 + 100 + 70− (40 + 40 + 30) + x

350 = 430− 110 + x

350 = 320 + x

x = 30

Therefore, 30 farmers farm beetroot, potatoes, and radish.

32. (4 points) There is a necklace with n beads (n ≥ 2) and one big assymetric jewel. (The jewel is needed
so that every bead is identifiable, we can say “this is the third bead to the left from the jewel”). The beads are
colored with k possible colors. Neighboring beads must have different colors. Every bead has 2 neighbors.
(The big jewel does not count as a neighbor and it is not colored.)
How many different ways can we color the necklace?
Solution: The number of good colorings is (k − 1)n + (−1)n(k − 1).
We will use the inclusion-exclusion principle. The total number of coloring (without any restriction) is kn.
Let the beads be b1, b2, . . . bn. Let Ai be the set of all coloring where bi and bi−1 have the same color.
|Ai| = kn−1. (k possible colors for the pair, kn−2 for everything else.)
|Ai ∩Aj | = kn−2. The colors of 2 beads are determined by their left neighbors, and we are free to choose the
colors of the other beads. With this reasoning we can see that |

⋂
i∈I Ai| = k|I| for 1 ≤ |I| ≤ n− 1.

|
⋂n
i=1Ai| = k (and not 1). The colors of all beads are the same, so we have k possibilities.

The number of good colorings is kn−n ·kn−1 +
(
n
2

)
·kn−2−

(
n
2

)
·kn−3 + · · ·+(−1)n−1

(
n
n−1
)
·k+(−1)n−1

(
n
n

)
·k

This equals kn−n ·kn−1+
(
n
2

)
·kn−2−

(
n
2

)
·kn−3+ · · ·+(−1)n−1

(
n
n−1
)
·k+(−1)n−1

(
n
n

)
·1+(−1)n−1

(
n
n

)
·(k−1)

Using the binomial theorem, the solution is (k − 1)n + (−1)n(k − 1).

(We can also check our result for small examples. If k = 1, n ≥ 2, then there is no good coloring, the answer
is 0. If k = 2, and n is even, we have 2 good colorings, if n is odd, then 0.)

Second solution: We use induction. Let P (n, k) denote the number of good colorings of a necklace with n
beads and k possible colors. For n = 2, P (2, k) = k(k−1), which satisfies the formula (k−1)n+(−1)n(k−1) =
(k − 1)2 + (−1)2(k − 1) = (k − 1)2 + (k − 1) = k(k − 1).
Take a chain with n beads. The neighboring beads must have different colors, but the two endpoints only
have one neighbor, so the number of good colorings is k(k− 1)n−1. We can choose from k colors for the first
bead, and from k− 1 for all the others, the color of the previous bead is forbidden. If the two endpoint have
different colors, this is a good coloring for the necklace as well. If the two endpoint have same color, merge
them into one, and we get a good coloring for a necklace with n− 1 beads.
Therefore, k(k − 1)n−1 = P (n, k) + P (n− 1, k). Using the induction hypothesis for n− 1,
P (n, k) = k(k − 1)n−1 − P (n− 1, k) = k(k − 1)n−1 − ((k − 1)n−1 + (−1)n−1(k − 1)) =
k(k−1)n−1−(k−1)n−1−(−1)n−1(k−1) = k(k−1)n−1−(k−1)n−1+(−1)n(k−1) = (k−1)n+(−1)n(k−1).

33. (5 points) A convex polygon with n sides is cut into triangles by connecting vertices with non-crossing
line segments (polygon triangulation). The number of triangles formed is n− 2.
How many different ways can this be achieved? (Solutions that can be transformed to each other via rotation
of reflection still count as different solutions.)
Solution: The number of different ways that this can be achieved is the Catalan number Cn−2. For example:
triangle: 1 way, quadrilateral: 2 ways, pentagon: 5 ways.
We know that C0 = 1 and Cn+1 =

∑n
i=0CiCn−i for n ≥ 0. (C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14 . . . ).

Let Tn denote the number of triangulations of an n-gon, We can see that Tn = Cn−2 is correct for n = 3, 4, 5.
We will use induction. Induction step: Take a convex polygon with n+2 sides. The vertices are v0, v1 . . . vn+1.
The side v0vn+1 should be included in a triangle, the third node of the traingle can be any one of v1 . . . vn.
If it is vi, removing this triangle, we need to find a triangulation of v0v1 . . . vi (a polygon with i + 1 sides)
and vivi+1 . . . vn+1 (a polygon with n− i+ 2 sides). In the degenerate cases when i = 1 or i = n, we should
“triangulate a segment”, here the number of solutions equals the Tn+1, so we can define T2 as 1, which satisfies



T2 = C0. Using this recursion and the induction hypothesis,

Tn+2 =

n∑
i=1

Ti+1 Tn−i+2 =

n∑
i=1

Ci−1Cn−i =

n−1∑
j=0

Cj Cn−j−1 = Cn

34. For handing in. (8 points)
Let x1, x2 . . . x100 be integers. Prove that there exist integers i and j such that 1 ≤ i ≤ j ≤ 100 and

j∑
k=i

xk is divisible by 100.

Solution:
Let si be si =

∑i
k=1 xk for every 1 ≤ i ≤ 100. If there is an i such that 100|si, we are done, 100|

∑i
k=1 xk.

If none of s1 . . . s100 is divisible by 100, only 99 residue classes are possible, so by the pigeonhole principle
there is an i and j such that si ≡ sj (mod 100).∑i

k=1 xk ≡
∑j

k=1 xk (mod 100).
We can suppose without loss of generality that j > i.
100|

∑j
k=1 xk −

∑i
k=1 xk

100|
∑j

k=i+1 xk. So we found a good sum.
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35. (2 points) In a group of 8 people, some of them shake hands. Is it possible that everyone shaked hands
with a different number of people?
Solution: Everyone had at least 0, at most 7 handshakes. It is not possible that someone shaked hands with
everyone and someone else with no one. So, by the pigeonhole principle there has to be two people with the
same number of handshakes.

36. (2 points) In a simple, connected graph on 6 vertices, the degrees of 5 vertices are 1, 2, 3, 4, 5 respectively.
What may be the degree of the 6th vertex?
Solution: Let us call the 5 vertices with known degree v1, v2, . . . v5, where d(vi) = i. The degree of v6 is
unknown. Node v5 is connected by an edge to every node, so the only neighbor of v1 is v5. Node v4 is
connected to very node except v1. Therefore the two neighbors of v2 are v5 and v4.
For v6, we know that it is connected by an edge to v5 and v4 and not connected to v1 and v2. The same is
true for v3. Since the degree of v3 is 3, v3 is connected by an edge to v6, therefore the degree of v6 is 3.

Second solution: Since the sum of the degrees is even, the missing number has to be odd: 1, 3, or 5. Use
the first half of the first solution. For v6, we know that it is connected by an edge to v5 and v4 and not
connected to v1 and v2, this rules out the degree being 5 or 1.

37. (2 points) Draw all simple graphs on 4, 5, or 6 vertixes that are isomorphic to their complement.
(The complement of a graph G is a graph G on the same vertices such that two distinct vertices of G are
connected by an edge if and only if they are not connected by an edge in G.
Two graphs are isomorphic if there exists a one-to-one correpondence between the nodes of the first graph
and the nodes of the second graph so that two nodes in the first graph that are connected by an edge
correspond to nodes in the second graph that are connected by an edge, and vice versa.)
Solution:
n = 4 A path with 4 nodes is a good solution.
n = 5 A cycle of length 5 is good, and there is another solution: a triangle plus 2 edges: v1v2, v2v3, v3v1, v1v3, v2v5
n = 6 It is not possible. K6 has

(
6
2

)
= 15 edges, half of the edges should be in G, half of them in the com-

plement. This cannot be done with an odd umber of edges.



38. (1 point each) Is there a simple graph where the degrees of the vertices are
a) 3, 3, 3, 2, 2, 2, 1, 1, 1; b) 6, 6, 5, 4, 4, 3, 2, 2, 1;
c) 7, 7, 7, 6, 6, 6, 5, 5, 5; d) 1, 3, 3, 4, 5, 6, 6?
Solution: a is possible.
b is impossible beacause the sum of the degrees is odd.
c is possible, if we have a solution for a, the complement of that graph is a solution for c.
d is impossible. The graph is simple and has 7 nodes. Therefore two nodes are connected to every other
node, there cannot be a node with degree 1.

39. (2 points) In a simple graph, vertex v has an odd degree. Prove there is a path from v to another vertex
with odd degree.
Solution: Let v be an odd degree node, and let G′ be the connected component containing v. The sum of
the degrees in G′ is even, so there has to be another node w with odd degree. Since they are in the same
connected component, there is a path from v to w.

40. (3 points) Characterize the graphs with the following property: any two edges have a common endpoint.
Note: In graph theory, a star Sk is the complete bipartite graph K1,k: a tree with one internal node and k
leaves.
Solution: First, consider the case where the graph is simple. If the graph has at most 2 edges, the answer is
a path of length 1 or 2. If the graph has at least 3 edges: Let e = {u, v} and f = {u, z} be two edges of the
graph (their common node is u). A third edge can either be edge {v, z}, or contain u and another vertex. If
the three edges form a triangle we cannot add any more edges, if they form a star, we can add more edges,
all of the new edges should contain u, so the result is still a star.
Therefore, the answer is, this graph is either a star or a cycle of length 3.

If the graph is not simple, we can add parallel edges to any edge and if the graph was a star, we can add
loops to its internal node.

41. (3 points) Which pairs of graphs are isomorphic?

a) b) c)

Solution: a) Not isomorphic, the right-hand side graph contains a triangle, but the left-hand side graph
does not.
b) Yes, they are isomorphic, see the picture.
c) Not isomorphic. The left is the Petersen graph, and it does not contain a cycle of length 4, while the
right graph contains a cycle of length 4.

2

1

3

45

6

7

1

2

3

45

6

7

42. (2 points) Draw the tree with the Prüfer code 4 3 0 1 1 3.
Solution: We recreate the two-line "long" Prüfer code
2 4 5 6 7 1 3
4 3 0 1 1 3 0

The columns are the edges of the tree.



43. (5 points) At most how many intersections do the diagonals of a convex n-sided polygon have?
Solution: Any two intersecting diagonals cover 4 nodes, and 4 nodes gives exacly one pair of intersenting
diagonals. (Other intersection points fall outside of the convex polygon). Therefore there is a one-to-one
correspondence between sets of 4 nodes and intersection points. The number of intersections is

(
n
4

)
.

44. For handing in. How many trees are there on n labeled vertices such that
a) (3 points) the degree of each node is at most 2.
b) (5 points) the node with label 1 has degree 1.
Solution: a) A tree where each degree is at most 2 is a path. There are n! possibilities to list n vertices in
a row, but this way we counted each path twice (from left to right, from right to left) thus the number of
labeled paths is n!/2.
b) removing the node with label 1, we get a labeled tree on n − 1 nodes. Using the Cayley formula, there
are (n − 1)n−3 such trees. We can reconnect node with label 1 to any of the other nodes, so in total there
are (n− 1)(n− 1)n−3 = (n− 1)n−2 possibilities.
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45. (2 points) Give the Prüfer code of the following tree:

Solution: The two-line Prüfer code is
3 4 5 2 6 7 8 9 1
2 1 2 0 0 1 9 1 0

Therefore the “short” Prüfer code is 2, 1, 2, 0, 0, 1, 9, 1.

46. (2 points) Select the value of x such that 1, 1, 5, x, 6, 6 is a Prüfer code of a tree, in which every degree
is odd. Give the tree as well.
Solution: Only x = 5 can be good, otherwise 5 appears in the code only once, thus the degree of node with
label 5 is 2. Choosing x = 5 is actually good, we get a tree with three wides with degree 3 and all the other
nodes have degree 1. (I omit the picture now.)

47. (2 points) Show that if a tree has a k-degree node, then it has at least k leaves. Is the reverse statement
true?
Solution: From every edge of the node with degree k, start a path. All of this paths must end in a leaf, and
since the graph does not contain a cycle, the path cannot merge, all these endpoints are different.

48. (2 points) How many trees are there on n labelled nodes, that have at least 3 leaves?
Solution: A tree has at least 3 leaves if and only if it is not a path. Using Cayley’s formula and an earlier
problem, the answer is nn−2 − n!/2, if n ≥ 2. (If n = 1 , there are no such trees.)

49. (2 points) Find a minimum cost spanning tree of this graph. How many minimum cost spanning trees
are there?



Solution: The costs of the edges in the spanning tree are 1, 1, 2, 2, 3, 4, 5, the total cost is 18. From the
three edges with cost 1, we can choose any two. Same for the edges with cost 2. The edge with cost 3 is
unique. From the edges with cost 4, to avoid cycles, we can choose one of two possibilities. The edge with
cost 5 is unique again, and we do not choose any of the cost 6 edges. Therefore the number of possibilies is(
3
2

)(
3
2

)(
2
1

)
= 18.

50. (2 points) G is a simple graph, its vertices are labelled with 1, 2, . . . , 100. Nodes i and j are connected
by an edge in G if and only if |i− j| ≤ 2. Does G contain an Eulerian circuit or an Eulerian walk?
Solution: G is connected. Nodes 2 and 99 have degree 3. Every other node has even degree (two or four).
Therefore there is an Eulerian walk in the graph. (It starts in 2 and ends is 99 or vice versa.) There is no
Eulerian circuit in the graph.

51. (2 points) Is there a graph on 10 nodes that contains an Eulerian circuit and the sum of the degrees is
34?
Solution: Yes, there is. For example, if the degree sequence is 2 2 2 4 4 4 4 4 4 4.

52. (1+1 point) a) Find a graph, where every degree is even, and it does not contain an Eulerian circuit.
b) Find a graph that is not conneted, and contains an Eulerian circuit.
Solution: This problem is about the importance of connectivity and isolated nodes. a) Two disjoint cycles.
b) Take a connected graph with an Eulerian circuit and add some isolated nodes. (Example: A cycle and
one isolated node.)

53. (4 points) In a group everyone knows 4 other people. (We assume that acquaintance is mutual.) Show
that they can sit down around some round tables in a way that everyone knows his/her two neighbors.
Solution: The problem is the following: in a 4-regular graph G, find a spanning subgraph H, sucht that
every component of H is a cycle. Suppose that G is connected. Then it has an Eulerian circuit. 2|E| =∑

v∈V d(v) = 4|V |, thus |E| = 2|V |. Following the Eulerian circuit, color the edges of the graph red and blue
in an alternating way. Since the graph has an even number of edges, the alternating coloring is kept even
for the starting node. Let H be the subgraph formed by the red edges. Every degree in H is two, so it is an
union of disjoint cycles.
If G is not connected, we do the previous method for each connected component.

54. (5 points) A government wants to connect cities with roads, (i. e. they want to build a spanning tree).
Optimists and pessimists win in unpredictable order. This means that sometimes they build the cheapest line
that does not create a cycle with those lines already constructed; sometimes they mark the most expensive
lines “impossible” until they get to a line that cannot be marked impossible without disconnecting the
network, and then they build it. Prove that they still end up with an optimal cost spanning tree.
Solution: See in the Lecture notes.

55. For handing in. (6 points) Tree T has 17 nodes and the degree of each node is either 1 or 4. After
Alice added some edges to this graph, it has an Eulerian circuit. At least how many edges did she add?
Solution: 6 edges. Let k be the number of nodes with degree 4. The tree has 16 edges, so the sum of the
degrees is

∑
v∈V d(v) = 4k + (17− k) = 32. We get that k = 5. The tree has 12 nodes with odd degree. By

adding 6 edges, Alice can achieve that every degree of the graph is even, thus it contains an Eulerian circuit.
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56. (2 points) Is the complement of the cycle of length 6 (C6) a planar graph?
Solution: Yes, it is planar.

57. (3 points) Show that the Petersen graph is not planar.

Solution: Suppose that it has a planar drawing. The Petersen graph does not contain a cycle of lenght 3
or 4, so every country has at least 5 sides. From this, e ≥ 5f

2 . We know that v = 10 and e + 15. From the
Euler formula, f + v = e+ 2, f + 10 = 15 + 2, so f + 7. This contradicts e ≥ 5f

2 , therefore the graph cannot
be planar.
Second solution: We can find a subdivision of K3,3 as a subgraph of the Petersen graph.

58. (2 points each) a) Show that the edges of the Petersen graph cannot be colored with 3 colors.
b) Show that the Petersen graph does not have a Hamiltonian cycle, but deleting any vertex, the remaining
graph has a Hamiltonian cycle.
Solution: a) Color the edges of the outer cycle with 3 colors: red, blue, red, blue, green. This defines the
colors of the 5 edges that connect the outer cycle and the inner cycle, 3 of them is colored green. We can see
that we cannot use the color green in the inner cycle, so we should color a cycle of lenght 5 with 2 colors.
That is not possible.
b) Suppose the graph contains a Hamiltonian cycle, this is a cycle of lenght 10. Color the edges of the cycle
red and blue in an alternating way. Since the Petersen graph is 3-regular, if we remove the Hamiltonian
cycle from the graph, the remaining part is a perfect matching, color the edges of this matching green. This
way we got a 3-coloring of the edges. From part a) we know that this is not possible.

59. (4 points) A group of musicians are traveling. Everyone has 3 enemies in the group. Show that they
can be divided to sit on two buses in a way that everyone has at most one enemy who is traveling on the
same bus as him.
Solution: As a graph theory problem: we have a finite, 3-regular graph. We want to find a partition of the
vertices, V = A ∪ B,A ∩ B = ∅, such that every v ∈ A has at most one neighbor in A, and every v ∈ B
has at most one neighbor in B. There are finitely many partitions, choose one where the number of edges
between A and B is maximal.
Suppose for contradiction that (w.l.o.g.) there is an x ∈ A such that x has at least two neighbors in A,
move this node to B. A := A \ {x}, B := B ∪ {x}. With this step, the number of edges between A and B
increases. But it was already maximal. Contradiction.

60. (4 points) A regular polyhedron is a (3 dimensional) polyhedron whose faces are identical regular
polygons. All side lengths are equal, and all angles are equal. In every vertex the same number of faces meet.
Using Euler’s Formula, show that only five convex regular polyhedra exist.
Solution: For a regular polytope, the resulting topological planar graph has the same degree, d, of each
vertex (where d ≥ 3), and each face has the same number, k ≥ 3, of vertices on its boundary.
Let us denote the number of vertices of the considered graph G = (V,E) by n, the number of edges by e,
and the number of faces by f . First we use the equation

∑
v∈V d(v) = 2|E| which in our case specializes to

dn = 2e. Similarly, kf = 2e.



Using Euler’s formula

e+ 2 = n+ f =
2e

d
+

2e

k

Divide by 2e.
1

2
+

1

e
=

1

d
+

1

k

Hence if both d and k are known, the other parameters n, e, and f are already determined uniquely. Min
(d, k) = 3, for otherwise 1

d + 1
k ≤

1
2 .

For d = 3, if k ≥ 6, then 1
d + 1

k ≤
1
2 . Therefore we get k ∈ {3, 4, 5}. Hence one of the following possibilities

must occur:

d k n e f

3 3 4 6 4
3 4 8 12 6
3 5 20 30 12
4 3 6 12 8
5 3 12 30 20

61. (2 points) Is there a bipartite graph with degrees 3,3,3,3,3,3,3,3,3,5,6,6? (These can be distributed in
the two classes of nodes arbitrarily.)
Solution: If the two classes are A and B,

∑
v∈A d(v) =

∑
v∈B d(v). No matter how we allocate the degrees,

on one side, the sum of the degrees is divisible by 3, on the other side, it is not.

62. (2 points) An island is inhabited by six tribes. They are on good terms and split up the island between
them, so that each tribe has a hunting territory of 100 square miles. The whole island has an area of 600
miles. The tribes decide that they all should choose new totems. They decide that each tribe should pick
one of the six species of tortoise that live on the island. They want to pick different totems, and totem for
each tribe should occur somewhere on their territory. The areas where the different species of tortoises live
don’t overlap, and they have they same area - 100 square miles. (Of course, the way the tortoises divide up
the islands may be entirely different from the way way the tribes do.) Show that such a selection of totems
is always possible.
Solution: Create a bipartite graph G = (A,B,E) with the six tribes on one side, the six tortoises of the
other side. Tribe a and tortoise b are connected by an edge, if their territories overlap. Take a subset of the
tribes, X ⊆ A. The total territory of them is |X| · 100 square miles. This cannot be covered with less than
|X| tortoise territories, therefore |Γ(X)| ≥ |X|. Using Hall’s theorem, the graph has a perfect matching.

63. For handing in. (10 points) Determine the number of pieces into which a circle is divided if n points
on its circumference are joined by all possible chords. The chords are in a general position, no three of them
goes thought the same point.
Solution: For small numbers, the number of regions is 1, 2, 4, 8, 16, 31, 57, 99, 163, 256...
Statement: For n ≥ 4, the number of regions is

(
n
4

)
+
(
n
2

)
+ 1.

Taking all n vertices on the cycle and all the intersections inside the cycle, we get a planar graph.
The number of nodes is |V | = n+

(
n
4

)
. We use problem 9 from exercise sheet 6, the number of intersections

of the diagonals of a convex n-sided polygon is
(
n
4

)
.

Every inner node has degree 4. Every outer node has degree n+ 1.
2|E| =

∑
d(v) = 4

(
n
4

)
+ n(n+ 1)

|E| = 2
(
n
4

)
+ n(n+1)

2 = 2
(
n
4

)
+
(
n
2

)
+ n

Using the Euler formula, the number of faces is |E| + 2 − |V |. Excluding the infinite face, the number of
regions is |E|+ 1− |V | = 2

(
n
4

)
+
(
n
2

)
+ n+ 1− (n+

(
n
4

)
) =

(
n
4

)
+
(
n
2

)
+ 1.

See: http://mathworld.wolfram.com/CircleDivisionbyChords.html
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64. (3 points) Show that if graph G has at least 11 nodes, then it is not possible that both G and the
complement of G are planar.
Solution: The number of nodes in G is n ≥ 11.The union of G and G is Kn, so they have n(n− 1)/2 edges
together. Suppose (for contradiction) that both G and G are planar. Therefore they have at most 3n − 6
edges, thus n(n− 1)/2 ≤ 6n− 12. After rearranging, n2 − 13n+ 24 ≤ 0. This function on n is an upwards
parabola, so n cannot be greater than the bigger root of the quadrastic equation n ≤ (13+

√
169− 96)/2 < 11,

contradiction.

65. (3 points) Find a graph G on 8 nodes such that neither G nor the complement of G is planar.
Solution: Let G be a K3,3 and two isolated vertices. Then the complement of G contains K5 as a subgraph.

66. a) (2 points) Let (P,L) be a projective plane with order n, and let A ⊆ P be a set of points such that
any three points of A are not collinear. Show that |A| ≤ n+ 2 .
b) (4 points) If n is odd, show that |A| ≤ n+ 1 .
Solution: a) Take a p ∈ A, there are n + 1 lines through p and by the pigeonhole principle, we can select
only one other point of each of them. Together with p, the number of selected points is ≤ n+ 2.
b) Suppose that A ⊆ P is a set of points such that any three points of A are not collinear and |A| = n+ 2.
Take a p ∈ A, and denote the n+ 1 lines through p as L1, L2 . . . Ln+1 From the previous part, we know that
Now look only at lines L1, L2 . . . Ln. A contains exactly one "non-p" points of each of these lines: denote
them as q1 . . . . . . qn. ( qi ∈ Li, qi ∈ A, qi 6= p. ) Points qi and qj (1 ≤ i < j ≤ n) define a line, and this line
has an intersection with Ln+1. Call this point rij . This point cannot be in A because that would mean 3
selected points on one line. We call the points we can get this way forbidden points. For any 1 ≤ i, j, k ≤ n
rij 6= rik. (If qiqj and qiqk defined the same intersection point, qi qj and qk would lie on one line.)
It is possible that rij = rlk if i, j, l, k are four different numbers. Thus one forbidden points can belong to

bn2 c point pairs. The number of forbidden points on line Ln+1 is at least (n2)
bn
2
c .

If n is odd, (
n
2

)
bn2 c

=

(
n
2

)
n−1
2

= n

On line Ln+1, p is selected and every other point is forbidden, so we cannot find a fitting point on the last
line.

67. (3 points) Let P be a finite set and let L be a system of subsets of P satisfying conditions
(i), Any two distinct sets L1, L2 ∈ L intersect in exactly one element, i.e. |L1 ∩ L2| = 1.
(ii) For any two distinct elements p1, p2 ∈ P ,there exists exactly one set L ∈ L such that p1 ∈ L and p2 ∈ L.
(iii’): There exist at least two distinct lines L1, L2 ∈ L having at least 3 points each.
Prove that any such (P,L) is a finite projective plane.
Solution: Parts (i) and (ii) are exactly waht we had if the definition of a projective plane. We need to
show that this system contains 4 points in general position. We know there exist at least two distinct lines
L1, L2 ∈ L having at least 3 points each. This 2 lines have and intersection point, call it p0. There are at
least 2 other points on line L1, denote them as p1, p2, and there are at least 2 other points on line L2, denote
them as p3, p4. We claim that p1, p2, p3, p4 are in a general position. Suppose there is a line L′ that contains
3 of these 4 points. Then L′ contains either p1, p2 or p3, p4. Two points define only one line, so L′ is either L1

or L2. Without loss of generality, we can say that L′ = L1 and it contains p1, p2, p3. But then p3 is on both
L1 and L2. There is only one intersection point, so p3 = p0. Contradiction, because p3 and p0 are different
points.

Definition
In a graph G = (V,E), a stable set is a subset C of V such that no pair of vertices in C is connected with an
edge. An edge cover is a subset F of E such that for each vertex v there exists e ∈ F where v is an endpoint
of e. Note that an edge cover can exist only if G has no isolated vertices.



α(G) := max{|C| : C is a stable set},
τ(G) := min{|W | : W is a vertex cover},
ν(G) := max{|M | : M is a matching},
ρ(G) := min{|F | : F is an edge cover}.

68. (3 points) Prove that if G = (V,E) is a graph without isolated vertices, then

α(G) + τ(G) = |V | = ν(G) + ρ(G)

Note: This is Gallai’s theorem.
Solution: U is a stable set if and only if V \U is a vertex cover. The first equality follows directly from this
statement.
To see the second equality, first let M be a matching of size ν(G). For each of the |V | − 2|M | vertices v not
covered byM , add toM an edge covering v. We obtain an edge cover F of size |M |+(|V |−2|M |) = |V |−|M |.
Hence ρ(G) ≤ |F | = |V | − |M | = |V | − µ(G).
Second, let F be an edge cover of size ρ(G). Choose from each component of the graph (V, F ) one edge, to
obtain a matching M . As (V, F ) has at least |V | − |F | components, we have µ(G) ≥ |M | ≥ |V | − |F | =
|V | − ρ(G).
(Any graph (V,E) has at least |V | − |E| components, this can be shown by induction on |E|: adding any
edge reduces the number of components by at most one.)

69. (4 points) Is it possible to arrange 8 bus routes in a city so that
(i) if any single route is removed (doesn’t operate, say) then any stop can still be reached from any other
stop, with at most one change, and
(ii) if any two routes are removed, then the network becomes disconnected?
Solution: Yes. Draw 8 lines in the plane in general position (no 2 parallel, no 3 intersecting at a common
point). Let the intersections represent stops and the lines bus routes.

70. For handing in. (7 points) Prove that the Fano plane is the only projective plane of order 2 (i.e. any
projective plane of order 2 is isomorphic to it. Define an isomorphism of set systems first).
Solution: Isomorphism: Let (P1,L1) and (P2,L2) be two projective planes, such that |P1| = |P2|, |L1| = |L2|
there exist a bijection f between P1 and P2 and a bijection g between L1 and L2 such that for every pi ∈ P1

and Li ∈ L1, pi ∈ Li if and only if f(pi) ∈ g(Li).
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Reminder: In a block design: The town has v inhabitants; they organize b clubs; every club has the same
number of members, say k; everybody belongs to exactly r clubs, and for any pair of citizens, there are
exactly λ clubs where both of them are members.
We know that bk = vr, λ(v − 1) = r(k − 1), and b ≥ v.

71. (3 points) Prove that if we color the points of the Fano plane with 2 colors, there will be line where all
three points have the same color.
Solution: Color the point with red and blue. We call a 2-coloring “good” if every line contains both red and
blue points. Suppose for contradiction that there exists a good coloring on the Fano plane. The red points
have to cover all the lines, (and same for the blue points). If there is only 1 red point, it covers three lines,
if there are 2 red points, they cover 5 lines (every point is on 3 lines and these 2 points have one line in
common). By symmetry, coloring with 5 red and 2 blue, or 6 red and 1 blue lines cannot be good either.
Suppose there are 3 red and 4 blue points. If the 3 red point are on one line, the coloring is not good, since
there is an all red line. So the 3 red points are not collinear. They cover the three lines passing though any
pair of the 3 red points, and 3 more lines since every point has degree 3. In total, the red points covered 6
lines, so there has to be an all blue line. Therefore the Fano plane cannot have any good coloring.



72. (2 points) In a town, there are 924 clubs, and every club has 21 members. Every 2 people can meet
each other in exactly 2 clubs. How many inhabitants are in this town? One person is a member of how many
clubs?
Solution: bk = vr, so 924 · 21 = vr.
λ(v − 1) = r(k − 1), so 2(v − 1) = 20r. From this v = 10r + 1 Putting this into the first equation
924 · 21 = 19404 = (10r + 1)r = 10r2 + r. Solving this quadratic equation we get that ther are 441 people,
and everyone is a member of 44 clubs.

73. (4 points) In a town, the clubs form a block design and every club has a badge. On a big event, everyone
from the town is present, and everyone wears a badge of a club he/she is a member of. (Each person wears
only one badge.) Is it always possible that everyone wears different badges?
Solution: First, we need that there are enough different badges, at least as many as citizens. That is, b ≥ v.
This is indeed guaranteed by Fisher’s Inequality.
We assign a bipartite graph to our block design. represents the people (this side has v points); the upper set
of points represents the clubs (this side has b points). We connect point a to point X if citizen a is a member
in club X. Choose a subset A of citizens, |A| = n, the set of clubs that someone from A is a member of is
Γ(A). |Γ(A)| = m. We want to use Hall’s theorem, we claim that m ≥ n.
Every citizen node has degree r, every club node has k. All the edges from A are also edges from Γ(A),
therefore nr ≤ mk.
We know from a lemma that bk = vr, and b ≥ v, therefore k ≤ r. So mk ≤ mr.
Therefore nr ≤ mk ≤ mr, nr ≤ mr thus n ≤ m. From Hall’s theorem, everyone can wear a different badge.

74. (2 points) Show that in a block design with k = 3 and λ = 1, the residue of v divided by 6 is 1 or 3.
Solution: We learned that bk = vr and λ(v − 1) = r(k − 1). For this special case, 3b = vr and v − 1 = 2r.
And hence r = v−1

2 and b = v(v−1)
6 The numbers r and b must be integers, v is an odd number, so if we

divide it by 6, the remainders can be 1, 3, or 5. Furthermore, v can not be of the form 6j + 5, because then
b = (6j+5)(6j+4)

6 = 6j2 + 9j + 3 + 1
3 which is not an integer.

Block desings like these are called Steiner systems

75. (3 points) Can you create a block design with the following parameters? v = 13, k = 3, λ = 1.
Solution: Yes, it is possible.
If we can partition the egdes of a complete graph on 13 nodes to disjoint triangles, we get the desired block
design.
Take 13 points on a cycle, that form a regular 13-gon. Number the nodes from 0 to 13. One of the clubs
is the triangle {0, 1, 4}, another club is triangle {0, 2, 7}. Select all the triangles we get by rotating {0, 1, 4}
and {0, 2, 7} around the center of the cycle. These are also clubs. We claim we got a partition of K13 into
triangles.
We say two points have distance k if they are k steps away from each other on the cycle. Here, distance 6
is the same as distance 7. Note that the sides of triangle {0, 1, 4} have distance 1, 3, and 4, and the sides of
triangle {0, 2, 7} have distance 2, 5, and 6. With the rotation method, every edge is incuded in exactly one
traingle.

76. (3 points) We color the points of the R2 plane with 3 colors. Show that there are two points such that
their distance is 1, and they have the same color.
Solution: Suppose we can color the plane with 3 colors such that two points of distance 1 always have
different color. If we build two equilateral unit triangles together, the opposite points (two points that have
distance

√
3) should have the same color. The following picture shows, that there two points that should

have the same color by the previous logic, but their distance is 1. Contradiction, we cannot color the plane
with 3 colors.



77. For handing in. (8 points) In a group, everyone has 3 friends. (We assume that friendship is mutual.)
If A and B are not friends, there is exactly one person in the group that they are both friends with. If A
and B are friends, then they do not have a common friend in the group. Is this situation possible? If it is
possible, how many people are in the group?
Solution: Represent it with a graph, the nodes are the people, two nodes are connected by and edge if the
two endpoints are friends. The situation in the problem is possible, an example is the Petersen graph. Let
n be the number of nodes, and e the number of edges. We know n = 10 is possible, and we want to show
that this is the only possible size.
Let us count the number of “cherries” in the graph. If A and B are not friends, there is exactly one person
in the group that they are both friends with, if they are friends, zero. Thus the number of cherries is

(
n
2

)
− e

(counted by the legs of the cherry). On the other hand, the graph is 3-regular, so the number of cherries is
3n (counted by the head of the cherry).(
n
2

)
− e = 3n

Since the graph is 3-regular, e = 3n/2.(
n
2

)
− 3n

2 = 3n(
n
2

)
= n(n−1)

2 = 9n
2

n− 1 = 9
n = 10. There are 10 people in the group.

Second solution: From the conditions, there are no C3 or C4 in the graph. Person A has three friends B,C,D.
They cannot be friends of each other, and cannot have a common friend who is not A, so they each have 2
new friends: E,F,G,H, I, J . This gives 1 + 3 + 6 people, so there has to be at least 10 people in the group.
We can connect E,F,G,H, I, J to each other in a way that satisfies all the conditions, so we get a good
construction (which is isomorphic to the Petersen graph). Suppose there are more than 10 people. Then the
11th person cannot be friends with A,B,C or D (they are “full”, already have 3 friends). The 11th person
and A are not friends and do not have a common friend. Contradiction.
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78. (3 points) For natural numbers m ≤ n, we define a Latin m× n rectangle as a rectangular table with
m rows and n columns with entries chosen from the set {1, 2, ..., n} and such that no row or column contains
the same number twice. Count the number of all possible Latin 2× n rectangles.
Solution: n! × (the number of permutations with no fixed point).
We learned earlier that the number of permutations with no fixed point is n!

(
1− 1

1! + 1
2! − · · ·+ (−1)n 1

n!

)
.

So, in total the number of all possible Latin 2× n rectangles is n! · n!
(
1− 1

1! + 1
2! − · · ·+ (−1)n 1

n!

)
.

79. Define a liberated square of order n as an n × n table with entries belonging to the set {1, 2, ..., n}.
Orthogonality of liberated squares is defined in the same way as for Latin squares. For a given number t,
consider the following two conditions:
(i) There exist t mutually orthogonal Latin squares of order n.
(ii) There exist t+ 2 mutually orthogonal liberated squares of order n.
(a) (2 points) Prove that (i) implies (ii).
(b) (4 points) Prove that (ii) implies (i).



Solution: (a) To given t orthogonal Latin squares, add one square with all the entries of the ith row equal
to i, i = 1, 2, ..., n, and one square having all the entries j in the jth column, j = 1, 2, ..., n.
(b) In order that a liberated square be orthogonal to another, it has to contain each i ∈ {1, 2, ..., n} exactly n
times. Permute entries of the given t+2 orthogonal liberated squares (the same permutation in each square)
in such a way that the first square has all numbers i in the ith row, i = 1, ..., n. Then permute entries inside
each row (again, in the same way for all squares) so that the second square has all the j in the jth column.
Check that the remaining t squares are Latin.

80. Let X be a finite set and letM be a system of subsets of X. Suppose that each set inM has exactly
k elements. A 2-coloring a set-system means we color the elements with 2 colors in a way that none of the
sets inM is monochromatic. Let m(k) be the smallest number of sets in a systemM that is not 2-colorable.

(3 points) Prove that m(4) ≥ 15, i.e. that any system of 14 4-tuples can be 2-colored
(distinguishing two cases according to the total number of points.)
Solution: Similar to the proof where we showed that m(3) ≥ 7.
Case 1: |X| ≤ 14. If needed, add some nodes, now we have exactly 14 nodes. Color 7 of them white, 7 of
them red. There are

(
14
7

)
= 3432 such colorings. For a given quadruple, there are 2

(
10
3

)
colorings that makes

them monochoromatic. (Color this 4 points white, and from the remaining 10, 3 points are white. Same for
red.)

For every quadruple, the probability that it is monochormatic is 2(103 )
(147 )

The probability that at least one of

the 14 quadruples is monochromatic is at most 14 · 2(
10
3 )

(147 )
= 14·120·2

3432 = 3360
3432 < 1. We use the probabilistic

method, there has to be a 2-coloring is the set system.
Case 2: |X| > 14.
We say that x and y are connected if there exists a set M ∈ M containing both x and y. If x and y are
points that are not connected, we define a new set system (X ′,M′) arising by "gluing" x and y together.
The points x and y are replaced by a single point z, and we put z into all sets that previously contained
either x or y. If a "glued" set system is 2-colorable, then the original is also 2-colorable.
We claim there are 2 points that are not connected. Every quadruple makes 6 point-pairs connected. There
are at most 14 · 6 connected pairs, and the total number of pairs is at least

(
15
2

)
. Since 14 · 6 <

(
15
2

)
, so there

are 2 points that are not connected. Do the gluing steps until we reach |X| = 14.

Note: this solution also works if the two cases are |X| ≤ 13 and |X| > 13.

81. (3 points) We have 27 fair coins and one counterfeit coin, which looks like a fair coin but is a bit heavier.
Show that one needs at least 4 weighings to determine the counterfeit coin. We have no calibrated weights,
and in one weighing we can only find out which of two groups of some k coins each is heavier, assuming that
if both groups consist of fair coins only the result is an equilibrium.
Solution: Each weighing has 3 possible outcomes, and hence 3 weighings can only distinguish one among
27 possibilities.

82. (5 points) We toss a fair coin n times. What is the expected number of runs? Runs are consecutive
tosses with the same result. For instance, the toss sequence HHHTTHTH has 5 runs. (HHH, TT, H, T, H).
(Tip: It is better to count boundaries between runs.)
Solution: It’s better to count boundaries among runs. The probability that a given position between two
tosses is a boundary is 1

2 . The first toss can be anything. For any of the next n−1 tosses, there is a 1
2 change

we start a next run.
Let X be the random variable that counts the number of changes, and let Ai be the event that there is a
change in the ith gap. IAi is an indicator random variable. IAi = 1 if there is a change, and 0 if not. By the
additivity of expected value,



E[X] =

n−1∑
i=1

E[IAi ] =

n−1∑
i=1

P (Ai) = (n− 1)
1

2
=
n− 1

2

There are one more runs than boundaries, therefore the expected number of the number of runs is 1 + n−1
2 =

n+1
2 .
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Definitions:
Let D be a digraph and c : A→ R. A potential is a function π : V → R. We say that π is feasible (with re-
spect to c) if π(v)−π(u) ≤ c(e) for every e ∈ [u, v]D. (We can also write e = uv if there are no parallel edges.)

A cost function c : A→ R is called conservative is there is no negative cost directed cycle.

83. (1 point) Let π : V → R be everywhere 0, that is, π(v) = 0 for every v ∈ V . When is this a feasible
potential?
Solution: If the cost function is nonnegative: c(uv) ≥ 0 for every uv ∈ A.

84. (2 points) Show that if a feasible potential exist for a given c, then a nonnegative feasible potential
also exists.
Solution: Let k := maxv∈V |π(v)| and π′(v) = π(v) + k for every v ∈ V . This is still a feasible potential,
since (π(v) + k)− (π(u) + k) = π(v)− π(u) ≤ c(e).

85. (1+1+2+2 points) Let D be a digraph and c : A → R is a conservative cost function, π1 and π2 are
feasible potentials. Show that:

• π1 + 4 is also a feasible potential.

• π1+π2
2 and 3π1+4π2

7 are feasible potentials.

• min(π1, π2) is a feasible potential. What about max(π1, π2)?

• bπ1c is a feasible potential if c is integer valued. Is it true for dπ1e?

Solution:

• same as in Problem 2.

• 3π1(v)+4π2(v)
7 − 3π1(u)+4π2(u)

7 = 3
7(π1(v)− π1(u)) + 4

7(π2(v)− π2(u)) ≤ 3
7c(uv) + 4

7c(uv) = c(uv)

• Look at a fixed u and v. Suppose that π1(u) = min(π1(u), π2(u)).

Then min(π1(v), π2(v)) −min(π1(u), π2(u)) = min(π1(v), π2(v)) − π1(u) ≤ π1(v) − π1(u) ≤ c(uv). So
it is still a feasible potential.

A similar argument works for the maximum: Suppose that π1(v) = min(π1(v), π2(v)).
max(π1(v), π2(v))−max(π1(u), π2(u)) = π1(v)−max(π1(u), π2(u)) ≤ π1(v)− π1(u) ≤ c(uv).

• π1(v)− π1(u) ≤ c(uv), by reorganizing the sides π(v) ≤ c(uv) + π(u).
bπ1(v)c ≤ bc(uv)+π(u)c Since c is integer valued, bπ1(v)c ≤ c(uv)+bπ(u)c and this is what we wanted.
The same works for dπ1e.



86. (3 points) Let D be a digraph, s, t ∈ V and c : A→ R is a conservative cost function. We will call an
arc a ∈ A beautiful if there is a minimum cost directed s → t path containing a. Show that if path P is an
s→ t path and all of its arcs are beautiful, then P is a cheapest path.
Solution: From Gallai’s theorem, there is a π feasible potential for c. From Duffin’s theorem,

min{c̃(P ) : P is an s→ t path} = max{π(t)− π(s) : π is a feasible potential}

Take the optimal feasible potential π from Duffin’s theorem, and work with that. We will call an edge uv an
”tight edge” if π(v)− π(u) = c(e).
For any path P ′ with vertices s = v0, v1, v2 . . . t = vk,
c(P ′) =

∑k−1
i=0 c(vivi+1) ≥

∑k−1
i=0 (π(vi+1)− π(vi)) = π(t)− π(s) If P ′ is a cheapest path, all of its edges are

tight edges. Therefore every beautiful edge is tight, and if we build a path from tight edges, it will be a
cheapest path.

87. (2 points) Let D be a digraph s, t ∈ V and c : A → R is a cost function, but it is not everywhere
nonnegative. We pick a constant k and make a new nonnegative cost function, c+(a) = c(a) + k for every
a ∈ A. Using Dijkstra’s algorithm with cost function c+ do we always get a cheapest s→ t path with respect
to the original cost?
Solution: No. For example, D has a path of length 2 with edge weights −10,−10 and a path of length 3
with edge weights −10,−10,−9, if we add k = 10 to them, we have weights 0, 0 versus 0, 0, 1. Dijkstra’s
algorithm picks 0 + 0 but in the original graph, −10,−10,−9 is the cheapest path.

88. (3 points) Let D be a digraph s, t ∈ V and S,H ⊆ V are st sets with minimal outdegree. Show that
S ∪H and S ∩H are st sets with minimal outdegree as well.
Solution: Let k be the outdegree of a st set in D.
We can show that d+(S) + d+(H) ≥ d+(S ∪H) + d+(S ∩H) by looking at all the possible edges that leave
S, H, S ∩H or S ∪H.
k + k = d+(S) + d+(H) ≥ d+(S ∪H) + d+(S ∩H) ≥ k + k. There has to be equality thoughout, so S ∪H
and S ∩H also have outdegree k.

Menger’s theorem (undirected, vertex-version)
Let G be a finite undirected graph and s and t two nonadjacent vertices. Then the size of the minimum
vertex cut for s and t (the minimum number of vertices, distinct from s and t, whose removal disconnects s
and t) is equal to the maximum number of pairwise internally vertex-disjoint paths from s to t.

89. For handing in. (8 points) Prove Hall’s theorem from the undirected vertex-version of Menger’s
theorem.
Solution: Let G be a bipartite graph G = (A,B;E). If there is a matching covering A then for every
X ⊆ A, |Γ(X)| ≥ |X|.
We will use Menger for the other direction of Hall’s theorem. Add two vertices to the graph: s and t. Connect
s to every vertex in A, and connect t to every vertex in B. Denote the graph we get this way by G′. Let C
be a minimum vertex cut for s and t in G′. Now Γ(A\C) ⊆ B∩C because there cannot be an edge between
A \ C and B \ C.
Suppose that for every X ⊆ A, |Γ(X)| ≥ |X|.
Then, |C| = |A ∩ C| + |B ∩ C| ≥ |A ∩ C| + |Γ(A \ C)| ≥ |A ∩ C| + |A \ C)| = |A| The size of the minimu
vertex cut is at least |A|. Using Menger’s theorem, there are |A| internally vertex-disjoint paths from s to t.
Removing s and t from these paths, we get a matching of size |A| in the original graph, i.e. a matching that
covers side A.
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90. (4 points) Consider the following network. We want to find the maximum flow from s to t. In
the following picture, on the arcs, the first number shows the flow f(ij) and the second number shows the



capacity. For example, on arc 3→ 2 the capacity is 4, i.e. c(v3v2) = 4, and 2 units flow on it i.e. f(v3v2) = 2.

a) Find an augmenting path from s to t. What are the forward edges and what are the backward edges?
With how many units can we increase the value of the flow?
b) After this one augmenting step, is the flow optimal? If yes, find the minimum cut. If not, find all the
remaining steps of the Ford-Fulkerson algorithm.
Solution: a) The only augmenting path is s-2-3-4-6-t. Forward edges: s → 2, 4 → 6, 6 → t. Backward
edges: 3→ 2, 4→ 3. We can improve the flow with 2 units.
b) After this step, the flow is optimal. The value of the flow is now 7 + 5 + 5 = 17. Minumum cut:
A = {s, 1, 2}, B = {3, 4, 5, 6, 7, t}. The capacity of this cut is 3 + 4 + 5 + 0 + 5 = 17. Another minimum cut:
A = {s, 1, 2, 3}, B = {4, 5, 6, 7, t}.

91. (5 points) Prove Kőnig’s theorem (in a biparite graph, size of the maximum matching = size of the
mininum vertex cover) from the Max-flow Min-cut theorem.
Solution: Let G be a bipartite graph G = (U, V ;E). It is easy to see, that if we have a matching of size ν,
we need at least ν nodes to cover every edge, thus τ ≥ ν.
Add two vertices to the graph: s and t. Connect s to every vertex in U , and connect t to every vertex in V .
Direct the edges from s to U , U to V and V to t. Denote the graph we get this way by D′ = (V ′, E′). The
capacity of every edge is 1. Since capacities are integers, we can find an integer valued maximum flow.
Let S, T be a minimum cut in this network. (s ∈ S and t ∈ T ) The set of directed edges in this (directed)
cut is Cut(S) = {ev ∈ E′ : u ∈ S, v ∈ T}. If there is an uv edge such that u ∈ U ∩ S and v ∈ V \ S, move
vertex v to S. S := S ∪ {v}. This way, the edge uv is not in the cut anymore. (There may be another
wv edges that also leave the cut) Edge vt enters the cut. This way, the number of edges in the cut cannot
increase, thus the capacity of the cut cannot increase.
Repeat this step until all the neighbors of U ∩S are in S. Now, the capacity of the cut is k = |U \S|+ |V ∩S|
and (U \ S) ∪ (V ∩ S) covers all the edges in G.
From the max flow min cut theorem, there is a flow of value k with 0-1 values on the edges. Using the edges
with flow value 1 between U and V , we get a matching of size k.
Therefore, we found size k a vertex cover and a size k matching in the original graph, thus τ = ν.

Second solution: Add two vertices to the graph: s and t. Connect s to every vertex in U , and connect t to
every vertex in V . Direct the edges from s to U , U to V and V to t. The capacity of every edge from s or
to t 1. The capacity is M for all the edges between U and V , where M is a large integer (it is enough if
M > |V |.) Let S, T be a minimum capacity cut in this network. (s ∈ S and t ∈ T ). Because of the large
capacities on the middle edges, there is no uv edge such that u ∈ U ∩S and v ∈ V \S. The rest of the proof
is the same as in the previous solution.

92. (3 points) D = (V,E) is a directed graph, s, t ∈ V and c1, c2, . . . , ck are capacity functions on the edges.
(ci : E → R+ for every i) Create an algorithm to decide whether there exists a st cut that is a minimum cut
for all of these capacity functions.
Solution: Let c := c1 + c2 + · · · + ck. Run the Ford- Fulkerson algorithm k + 1 times, for each of the ci



capacities and also for c as a capacity function.
Let A,B be the minimal cut for c. For any ci

ci(A,B) ≥ min
A′B′ is an st cut

ci(A
′, B′)

c(A,B) =
k∑
i=1

ci(A,B) ≥
k∑
i=1

min
A′B′ is an st cut

ci(A
′, B′)

If the capacity of the minimal cut for c equals the sum of the capacities of the minimal cuts for each ci, i.e.
c(A,B) =

∑k
i=1 minA′B′ is an st cut ci(A

′, B′) then the cut we are looking for exists: (A,B) is a cut like that.
It it is not equal, no such cut exists. It is clear that (A,B) cannot be the good cut in this case. If some other
(C,D) cut is minimal for each of the ci capacities, then if c(A,B) ≥ c(C,D), so (C,D) would be minimal
for capacity c as well.

93. (2 points) How many ways are there to distribute 10 identical balls among 2 boys and 2 girls, if each
boy should get at least one ball and each girl should get at least 2 balls? Express the answer as a coefficient
of a suitable power of x in a suitable product of polynomials.
Solution: (x+x2+x3+· · ·+x5)(x+x2+x3+· · ·+x5)(x2+x3+· · ·+x6)(x2+x3+· · ·+x6) The answer is a co-
efficient of x10 in this product. We may also use (x+x2+x3+. . . )(x+x2+x3+. . . )(x2+x3+. . . )(x2+x3+. . . )
instead.

a(x) = (x+x2+x3+. . . )(x+x2+x3+. . . )(x2+x3+. . . )(x2+x3+. . . ) = x6(1+x+x2+x3+. . . )4 = x6 1
(1−x)4

From the generalized binomial theorem, 1
(1−x)4 =

(
3
3

)
+
(
4
3

)
x+

(
5
3

)
x2 +

(
6
3

)
x3 +

(
7
3

)
x4 . . . So the coefficient we

are looking for is
(
7
3

)
= 35.

Alternative solution, without generating functions: Give 1 + 1 + 2 + 2 balls to the boys and girls. We are
left with 4 balls that we want to share among 4 people. This can be done by placing 3 separators between 4
objects, so in

(
7
3

)
ways.

94. (2 points) Find the probability that we get exactly 12 points when rolling 3 dice.
Solution:
a(x) = (x+ x2 + x3 + · · ·+ x6)(x+ x2 + x3 + · · ·+ x6)(x+ x2 + x3 + · · ·+ x6). The answer is the coefficient
of x12 in this product.

a(x) = x3
(

1− x6

1− x

)3

= x3
1

(1− x)3
(1− 3x6 + 3x12 − x18)

From the generalized binomial theorem, 1
(1−x)3 =

(
2
2

)
+
(
3
2

)
x+

(
4
2

)
x2 . . .

Therefore, a(x) = (
(
2
2

)
+
(
3
2

)
x+

(
4
2

)
x2 . . . )x3(1− 3x6 + 3x12 − x18)

We are looking for x12, it appears in
(
11
2

)
x9 · x3 and in

(
5
2

)
x3 · x3 · (−3x6) thus the coefficient of x12 in a(x)

is
(
11
2

)
− 3
(
5
2

)
= 55− 3 · 10 = 25.

There are 63 = 216 ways to roll 3 dice, so the probability that the sum is 12 is 25
216 .



95. (4 points) Find generating functions for the following sequences (express them in a closed form, without
infinite series):
a) 0, 0, 0, 0,−6, 6,−6, 6,−6, . . .
b) 1, 0, 1, 0, 1, 0, . . .
c) 1, 2, 1, 4, 1, 8, . . .
d) 1, 1, 0, 1, 1, 0, 1, 1, 0, . . .

Solution: a)

6(x5 − x4) 1

1− x2
= −6x4

1

1 + x

b)
1

1− x2

c)
1

1−2x2 − 1

x
+

1

1− x2
=

1

x− 2x3
− 1

x
+

1

1− x2
=

2x

1− 2x2
+

1

1− x2

d)

(1 + x)
1

1− x3


