
Discrete Mathematics, exercise sheet 9
Solutions

1. (3 points) Show that if graph G has at least 11 nodes, then it is not possible that both G and the
complement of G are planar.
Solution: The number of nodes in G is n ≥ 11.The union of G and G is Kn, so they have n(n− 1)/2 edges
together. Suppose (for contradiction) that both G and G are planar. Therefore they have at most 3n − 6
edges, thus n(n− 1)/2 ≤ 6n− 12. After rearranging, n2 − 13n+ 24 ≤ 0. This function on n is an upwards
parabola, so n cannot be greater than the bigger root of the quadrastic equation n ≤ (13+

√
169− 96)/2 < 11,

contradiction.

2. (3 points) Find a graph G on 8 nodes such that neither G nor the complement of G is planar.
Solution: Let G be a K3,3 and two isolated vertices. Then the complement of G contains K5 as a subgraph.

3. a) (2 points) Let (P,L) be a projective plane with order n, and let A ⊆ P be a set of points such that
any three points of A are not collinear. Show that |A| ≤ n+ 2 .
b) (4 points) If n is odd, show that |A| ≤ n+ 1 .
Solution: a) Take a p ∈ A, there are n + 1 lines through p and by the pigeonhole principle, we can select
only one other point of each of them. Together with p, the number of selected points is ≤ n+ 2.
b) Suppose that A ⊆ P is a set of points such that any three points of A are not collinear and |A| = n+ 2.
Take a p ∈ A, and denote the n+1 lines through p as L1, L2 . . . Ln+1 From the previous part, we know that
Now look only at lines L1, L2 . . . Ln. A contains exactly one "non-p" points of each of these lines: denote
them as q1 . . . . . . qn. ( qi ∈ Li, qi ∈ A, qi 6= p. ) Points qi and qj (1 ≤ i < j ≤ n) define a line, and this line
has an intersection with Ln+1. Call this point rij . This point cannot be in A because that would mean 3
selected points on one line. We call the points we can get this way forbidden points. For any 1 ≤ i, j, k ≤ n
rij 6= rik. (If qiqj and qiqk defined the same intersection point, qi qj and qk would lie on one line.)
It is possible that rij = rlk if i, j, l, k are four different numbers. Thus one forbidden points can belong to

bn2 c point pairs. The number of forbidden points on line Ln+1 is at least (n2)
bn
2
c .

If n is odd, (
n
2

)
bn2 c

=

(
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2

)
n−1
2

= n

On line Ln+1, p is selected and every other point is forbidden, so we cannot find a fitting point on the last
line.

4. (3 points) Let P be a finite set and let L be a system of subsets of P satisfying conditions
(i), Any two distinct sets L1, L2 ∈ L intersect in exactly one element, i.e. |L1 ∩ L2| = 1.
(ii) For any two distinct elements p1, p2 ∈ P ,there exists exactly one set L ∈ L such that p1 ∈ L and p2 ∈ L.
(iii’): There exist at least two distinct lines L1, L2 ∈ L having at least 3 points each.
Prove that any such (P,L) is a finite projective plane.
Solution: Parts (i) and (ii) are exactly waht we had if the definition of a projective plane. We need to
show that this system contains 4 points in general position. We know there exist at least two distinct lines
L1, L2 ∈ L having at least 3 points each. This 2 lines have and intersection point, call it p0. There are at
least 2 other points on line L1, denote them as p1, p2, and there are at least 2 other points on line L2, denote
them as p3, p4. We claim that p1, p2, p3, p4 are in a general position. Suppose there is a line L′ that contains
3 of these 4 points. Then L′ contains either p1, p2 or p3, p4. Two points define only one line, so L′ is either L1

or L2. Without loss of generality, we can say that L′ = L1 and it contains p1, p2, p3. But then p3 is on both
L1 and L2. There is only one intersection point, so p3 = p0. Contradiction, because p3 and p0 are different
points.

Definition
In a graph G = (V,E), a stable set is a subset C of V such that no pair of vertices in C is connected with an



edge. An edge cover is a subset F of E such that for each vertex v there exists e ∈ F where v is an endpoint
of e. Note that an edge cover can exist only if G has no isolated vertices.
α(G) := max{|C| : C is a stable set},
τ(G) := min{|W | : W is a vertex cover},
ν(G) := max{|M | : M is a matching},
ρ(G) := min{|F | : F is an edge cover}.

5. (3 points) Prove that if G = (V,E) is a graph without isolated vertices, then

α(G) + τ(G) = |V | = ν(G) + ρ(G)

Note: This is Gallai’s theorem.
Solution: U is a stable set if and only if V \U is a vertex cover. The first equality follows directly from this
statement.
To see the second equality, first let M be a matching of size ν(G). For each of the |V | − 2|M | vertices v not
covered byM , add toM an edge covering v. We obtain an edge cover F of size |M |+(|V |−2|M |) = |V |−|M |.
Hence ρ(G) ≤ |F | = |V | − |M | = |V | − µ(G).
Second, let F be an edge cover of size ρ(G). Choose from each component of the graph (V, F ) one edge, to
obtain a matching M . As (V, F ) has at least |V | − |F | components, we have µ(G) ≥ |M | ≥ |V | − |F | =
|V | − ρ(G).
(Any graph (V,E) has at least |V | − |E| components, this can be shown by induction on |E|: adding any
edge reduces the number of components by at most one.)

6. (4 points) Is it possible to arrange 8 bus routes in a city so that
(i) if any single route is removed (doesn’t operate, say) then any stop can still be reached from any other
stop, with at most one change, and
(ii) if any two routes are removed, then the network becomes disconnected?
Solution: Yes. Draw 8 lines in the plane in general position (no 2 parallel, no 3 intersecting at a common
point). Let the intersections represent stops and the lines bus routes.

7. For handing in. (7 points) Prove that the Fano plane is the only projective plane of order 2 (i.e. any
projective plane of order 2 is isomorphic to it. Define an isomorphism of set systems first).


