
Discrete Mathematics, exercise sheet 5
solutions

1. (3 points) The inclusion-exclusion principle states the following: For finite sets A1, A2 . . . An:∣∣∣∣∣
n⋃
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∣∣∣∣∣ =
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|Ai| −
∑

1≤i<j≤n
|Ai ∩Aj |+

∑
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|Ai ∩Aj ∩Ak| − . . . (−1)n−1|A1 ∩A1 ∩ . . . An|

Prove this statement with induction. (So, suppose we already know that the statement is true for n− 1 sets,
and using this, prove for n sets.)

2. (3 points) Express the following sum in a closed form.(
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Solution: Use the binomial theorem:
∑n

k=0

(
n
k

)
· 2k =

∑n
k=0

(
n
k

)
· 2k · 1n−k = (2 + 1)n = 3n

3. (2 points) Prove that Fn and Fn−1 are relative primes. (Fn is the nth Fibonacci number.)
Solution: Suppose Fn and Fn−1 are not relative primes. This means there is a p > 1, p|Fn and p|Fn−1 .
Since Fn−2 = Fn−Fn−1, p|Fn−2. Therefore Fn−1 and Fn−2 are not relative primes either. After some steps,
we reach that F1 = 1 and F2 = 1 are not relative primes. But they are. Contradiction.

4. (2 points) There are 350 farmers in a large region. 260 of them farm beetroot, 100 farm potatoes, 70
farm radish, 40 farm beetroot and radish, 40 farm potatoes and radish, and 30 farm beetroot and potatoes.
All of them farm something out of these three vegetables.
Determine the number of farmers that farm beetroot, potatoes, and radish.
Solution: Let x be the number of people who farm all three. Use the inclusion exclusion prociple.∣∣∣∣∣

3⋃
i=1

Ai

∣∣∣∣∣ =
3∑

i=1

|Ai| −
∑

1≤i<j≤3
|Ai ∩Aj |+ |A1 ∩A2 ∩A2|

350 = 260 + 100 + 70− (40 + 40 + 30) + x

350 = 430− 110 + x

350 = 320 + x

x = 30

Therefore, 30 farmers farm beetroot, potatoes, and radish.

5. (4 points) There is a necklace with n beads (n ≥ 2) and one big assymetric jewel. (The jewel is needed so
that every bead is identifiable, we can say “this is the third bead to the left from the jewel”). The beads are
colored with k possible colors. Neighboring beads must have different colors. Every bead has 2 neighbors.
(The big jewel does not count as a neighbor and it is not colored.)
How many different ways can we color the necklace?
Solution: The number of good colorings is (k − 1)n + (−1)n(k − 1).
We will use the inclusion-exclusion principle. The total number of coloring (without any restriction) is kn.
Let the beads be b1, b2, . . . bn. Let Ai be the set of all coloring where bi and bi−1 have the same color.
|Ai| = kn−1. (k possible colors for the pair, kn−2 for everything else.)
|Ai ∩Aj | = kn−2. The colors of 2 beads are determined by their left neighbors, and we are free to choose the
colors of the other beads. With this reasoning we can see that |

⋂
i∈I Ai| = k|I| for 1 ≤ |I| ≤ n− 1.

|
⋂n

i=1Ai| = k (and not 1). The colors of all beads are the same, so we have k possibilities.
The number of good colorings is kn−n ·kn−1+
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Using the binomial theorem, the solution is (k − 1)n + (−1)n(k − 1).

(We can also check our result for small examples. If k = 1, n ≥ 2, then there is no good coloring, the answer
is 0. If k = 2, and n is even, we have 2 good colorings, if n is odd, then 0.)

Second solution: We use induction. Let P (n, k) denote the number of good colorings of a necklace with n
beads and k possible colors. For n = 2, P (2, k) = k(k−1), which satisfies the formula (k−1)n+(−1)n(k−1) =
(k − 1)2 + (−1)2(k − 1) = (k − 1)2 + (k − 1) = k(k − 1).
Take a chain with n beads. The neighboring beads must have different colors, but the two endpoints only
have one neighbor, so the number of good colorings is k(k− 1)n−1. We can choose from k colors for the first
bead, and from k− 1 for all the others, the color of the previous bead is forbidden. If the two endpoint have
different colors, this is a good coloring for the necklace as well. If the two endpoint have same color, merge
them into one, and we get a good coloring for a necklace with n− 1 beads.
Therefore, k(k − 1)n−1 = P (n, k) + P (n− 1, k). Using the induction hypothesis for n− 1,
P (n, k) = k(k − 1)n−1 − P (n− 1, k) = k(k − 1)n−1 − ((k − 1)n−1 + (−1)n−1(k − 1)) =
k(k−1)n−1−(k−1)n−1−(−1)n−1(k−1) = k(k−1)n−1−(k−1)n−1+(−1)n(k−1) = (k−1)n+(−1)n(k−1).

6. (5 points) A convex polygon with n sides is cut into triangles by connecting vertices with non-crossing
line segments (polygon triangulation). The number of triangles formed is n− 2.
How many different ways can this be achieved? (Solutions that can be transformed to each other via rotation
of reflection still count as different solutions.)
Solution: The number of different ways that this can be achieved is the Catalan number Cn−2. For example:
triangle: 1 way, quadrilateral: 2 ways, pentagon: 5 ways.
We know that C0 = 1 and Cn+1 =

∑n
i=0CiCn−i for n ≥ 0. (C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14 . . . ).

Let Tn denote the number of triangulations of an n-gon, We can see that Tn = Cn−2 is correct for n = 3, 4, 5.
We will use induction. Induction step: Take a convex polygon with n+2 sides. The vertices are v0, v1 . . . vn+1.
The side v0vn+1 should be included in a triangle, the third node of the traingle can be any one of v1 . . . vn.
If it is vi, removing this triangle, we need to find a triangulation of v0v1 . . . vi (a polygon with i + 1 sides)
and vivi+1 . . . vn+1 (a polygon with n− i+ 2 sides). In the degenerate cases when i = 1 or i = n, we should
“triangulate a segment”, here the number of solutions equals the Tn+1, so we can define T2 as 1, which satisfies
T2 = C0. Using this recursion and the induction hypothesis,

Tn+2 =

n∑
i=1

Ti+1 Tn−i+2 =

n∑
i=1

Ci−1Cn−i =

n−1∑
j=0

Cj Cn−j−1 = Cn

7. For handing in. (8 points)
Let x1, x2 . . . x100 be integers. Prove that there exist integers i and j such that 1 ≤ i ≤ j ≤ 100 and

j∑
k=i

xk is divisible by 100.

Solution:
Let si be si =

∑i
k=1 xk for every 1 ≤ i ≤ 100. If there is an i such that 100|si, we are done, 100|

∑i
k=1 xk.

If none of s1 . . . s100 is divisible by 100, only 99 residue classes are possible, so by the pigeonhole principle
there is an i and j such that si ≡ sj (mod 100).∑i

k=1 xk ≡
∑j

k=1 xk (mod 100).
We can suppose without loss of generality that j > i.
100|

∑j
k=1 xk −

∑i
k=1 xk

100|
∑j

k=i+1 xk. So we found a good sum.


