Discrete Mathematics, week 2

1. (1 point each)

- a) Show that a largest element is always maximal.
- b) Find an example of a poset with a maximal element but no largest element.
- c) Find a poset having no smallest element and no minimal element either, but possessing a largest element.

2. (2 points)

Consider the set $\{1, 2, ..., n\}$ ordered by the divisibility relation. What is the maximum possible number of elements of a set $X \subseteq \{1, 2, ..., n\}$ that is ordered linearly by the relation? (such a set X is called a chain)

3. (3 points)

Prove that a relation R on a set X satisfies $R \cap R^{-1} = \Delta_X$ if and only if R is reflexive and antisymmetric.

4. (3 points)

Let X, Y, Z be finite sets, let $R \subseteq X \times Y$ and $S \subseteq Y \times Z$ be relations, and let A_R and A_S be their adjacency matrices, respectively. $(A_R \text{ has } |X| \text{ rows and } |Y| \text{ coloumns and } a_{Rij} = 1 \text{ if } x_i Ry_j \text{ otherwise } 0.)$ Their matrix product is $A_R A_S$. Discover and describe the connection of the composed relation $R \circ S$ to the matrix product $A_R A_S$.

5. (for handing in, 8 points)

Let R be a relation on a set X such that there is no finite sequence of elements x_1, x_2, \ldots x_k of X satisfying $x_1Rx_2, x_2Rx_3, \ldots, x_{k-1}Rx_k, x_kRx_1$ (we say that such an R is acyclic). Prove that there exists an ordering \preceq on X such that $R \subseteq \preceq$. You may assume that X is finite if this helps.